高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

格上基于身份的变色龙签名方案

张彦华 陈岩 刘西蒙 尹毅峰 胡予濮

张彦华, 陈岩, 刘西蒙, 尹毅峰, 胡予濮. 格上基于身份的变色龙签名方案[J]. 电子与信息学报, 2024, 46(2): 757-764. doi: 10.11999/JEIT230155
引用本文: 张彦华, 陈岩, 刘西蒙, 尹毅峰, 胡予濮. 格上基于身份的变色龙签名方案[J]. 电子与信息学报, 2024, 46(2): 757-764. doi: 10.11999/JEIT230155
ZHANG Yanhua, CHEN Yan, LIU Ximeng, YIN Yifeng, HU Yupu. Identity-Based Chameleon Signature Schemes over Lattices[J]. Journal of Electronics & Information Technology, 2024, 46(2): 757-764. doi: 10.11999/JEIT230155
Citation: ZHANG Yanhua, CHEN Yan, LIU Ximeng, YIN Yifeng, HU Yupu. Identity-Based Chameleon Signature Schemes over Lattices[J]. Journal of Electronics & Information Technology, 2024, 46(2): 757-764. doi: 10.11999/JEIT230155

格上基于身份的变色龙签名方案

doi: 10.11999/JEIT230155
基金项目: 国家自然科学基金(61802075),河南省自然科学基金(222300420371,202300410508),河南省网络密码技术重点实验室开放课题(LNCT2022-A09),河南省高等学校重点科研项目(22A520047)
详细信息
    作者简介:

    张彦华:男,讲师,研究方向为格公钥密码学、属性基密码学和后量子密码学等

    陈岩:男,硕士生,研究方向为格公钥密码、基于身份的密码等

    刘西蒙:男,研究员,研究方向为私计算、密文数据挖掘等

    尹毅峰:男,教授,研究方向为群组密钥协商等

    胡予濮:男,教授,研究方向为多线性映射、后量子密码学等

    通讯作者:

    张彦华 yhzhang@email.zzuli.edu.cn

  • 中图分类号: TP309

Identity-Based Chameleon Signature Schemes over Lattices

Funds: The National Natural Science Foundation of China (61802075), The Natural Science Foundation of Henan Province (222300420371, 202300410508), The Open Subjects of Henan Provincial Key Laboratory of Network Cryptography (LNCT2022-A09), The Key Scientific Research Project of Higher Education of Henan Province (22A520047)
  • 摘要: 变色龙签名(CS)是一种比较理想的指定验证者签名,其采用变色龙哈希函数来实现签名的不可传递性,使得任意第三方不信任指定验证者所披露的内容,且避免了不可否认签名必须在线交互验证的缺陷。在满足不可传递性的同时,变色龙签名还要求满足不可伪造性以及签名者可拒绝性和不可抵赖性等。针对基于大整数分解或离散对数等数论难题的变色龙签名无法抵御量子计算机攻击,以及用户对公钥数字证书依赖的问题,该文给出了格上基于身份的变色龙签名(IBCS),新方案避免了已有方案存在的签名者无法拒绝指定验证者伪造的签名的安全性漏洞,并将最终签名的传输开销由平方级降为线性级;进一步地,针对变色龙签名在仲裁阶段不可传递性失效的问题,给出了格上抗消息暴露的基于身份的变色龙签名,新方案使得签名者能够在不暴露消息内容的条件下拒绝任意敌手伪造的变色龙签名。特别地,基于格上经典的小整数解问题,两个方案在随机预言机模型下是可证明安全的。
  • 表  1  效率分析

    方案公共参数长度签名长度不可伪造性不可传递性可拒绝性不可抵赖性抗消息暴露性安全模型
    文献[12]$\tilde {\mathcal{O} }\left( { {n^2} } \right)$$ \tilde {\mathcal{O}}\left( {{n^2}} \right) $$ \times $$ \surd $$ \times $$ \surd $$ \times $随机预言机
    文献[13]$ \tilde {\mathcal{O}}\left( {{n^3}} \right) $$ \tilde {\mathcal{O}}\left( {{n^2}} \right) $$ \surd $$ \surd $$ \times $$ \surd $$ \times $标准
    文献[14]$ \tilde {\mathcal{O}}\left( {{k_0} \cdot {n^2}} \right) $$ \tilde {\mathcal{O}}\left( {{n^2}} \right) $$ \surd $$ \times $$ - $$ - $$ - $标准
    文献[15]$ \tilde {\mathcal{O}}\left( {{n^2}} \right) $$ \tilde {\mathcal{O}}\left( {{k_1} \cdot n} \right) $$ \surd $$ \surd $$ \surd $$ \surd $$ \times $随机预言机
    本文方案1$ \tilde {\mathcal{O}}\left( {{n^2}} \right) $$ \tilde {\mathcal{O}}\left( n \right) $$ \surd $$ \surd $$ \surd $$ \surd $$ \times $随机预言机
    本文方案2$ \tilde {\mathcal{O}}\left( {{n^2}} \right) $$ \tilde {\mathcal{O}}\left( n \right) $$ \surd $$ \surd $$ \surd $$ \surd $$ \surd $随机预言机
    注:$ {k_0} $表示同态计算的数据集尺寸,$ {k_1} $表示有向无环图的内部顶点数;$ \times $表示不满足,$ \surd $表示满足,$ - $表示不考虑。
    下载: 导出CSV
  • [1] CHAUM D and VAN ANTWERPEN H. Undeniable signatures[C]. The Conference on the Theory and Application of Cryptology, Santa Barbara, USA, 1989: 212–216.
    [2] JAKOBSSON M, SAKO K, and IMPAGLIAZZO R. Designated verifier proofs and their applications[C]. The International Conference on the Theory and Applications of Cryptographic Techniques, Saragossa, Spain, 1996: 143–154.
    [3] KRAWCZYK H and RABIN T. Chameleon hashing and signatures[OL]. http://eprint.iacr.org/1998/10.1998.3.
    [4] SHAMIR A. Identity-based cryptosystems and signature schemes[C]. The Workshop on the Theory and Application of Cryptographic Techniques, Santa Barbara, USA, 1984: 47–53.
    [5] ATENIESE G and DE MEDEIROS B. Identity-based chameleon hash and applications[C]. The 8th International Conference on Financial Cryptography, Key West, USA, 2004: 164–180.
    [6] XIE Zhikang, SHEN Qingni, LI Cong, et al. Identity-based chameleon hash without random oracles and application in the mobile internet[C]. ICC 2021-IEEE International Conference on Communications, Montreal, Canada, 2021: 1–6.
    [7] WU Chunhui, KE Lishan, and DU Yusong. Quantum resistant key-exposure free chameleon hash and applications in redactable blockchain[J]. Information Sciences, 2021, 548: 438–449. doi: 10.1016/j.ins.2020.10.008.
    [8] LI Cong, SHEN Qingni, XIE Zhikang, et al. Efficient identity-based chameleon hash for mobile devices[C]. ICASSP 2022-2022 IEEE International Conference on Acoustics, Speech and Signal Processing, Singapore, 2022: 3039–3043.
    [9] NIST. PQC standardization process: Announcing four candidates to be standardized, plus fourth round candidates[EB/OL]. https://csrc.nist.gov/news/2022/pqc-candidates-to-be-standardized-and-round-4, 2022.
    [10] JOSEPH D, MISOCZKI R, MANZANO M, et al. Transitioning organizations to post-quantum cryptography[J]. Nature, 2022, 605(7909): 237–243. doi: 10.1038/s41586-022-04623-2.
    [11] CASH D, HOFHEINZ D, KILTZ E, et al. Bonsai trees, or how to delegate a lattice basis[C]. The 29th Annual International Conference on the Theory and Applications of Cryptographic Techniques, Riviera, French, 2010: 523–552.
    [12] 谢璇, 喻建平, 王廷, 等. 基于格的变色龙签名方案[J]. 计算机科学, 2013, 40(2): 117–119. doi: 10.3969/j.issn.1002-137X.2013.02.026.

    XIE Xuan, YU Jianping, WANG Ting, et al. Chameleon signature scheme based on lattice[J]. Computer Science, 2013, 40(2): 117–119. doi: 10.3969/j.issn.1002-137X.2013.02.026.
    [13] NOH G and JEONG I R. Strong designated verifier signature scheme from lattices in the standard model[J]. Security and Communication Networks, 2016, 9(18): 6202–6214. doi: 10.1002/sec.1766.
    [14] XIE Dong, PENG Haipeng, LI Lixiang, et al. Homomorphic signatures from chameleon hash functions[J]. Information Technology and Control, 2017, 46(2): 274–286. doi: 10.5755/j01.itc.46.2.14320.
    [15] THANALAKSHMI P, ANITHA R, ANBAZHAGAN N, et al. A hash-based quantum-resistant chameleon signature scheme[J]. Sensors, 2021, 21(24): 8417. doi: 10.3390/s21248417.
    [16] GENTRY C, PEIKERT C, and VAIKUNTANATHAN V. Trapdoors for hard lattices and new cryptographic constructions[C]. The 40th Annual ACM Symposium on Theory of Computing, Victoria, Canada, 2008: 197–206.
    [17] AJTAI M. Generating hard instances of lattice problems (extended abstract)[C]. The 28th Annual ACM Symposium on Theory of Computing, Philadelphia, USA, 1996: 99–108.
    [18] ALWEN J and PEIKERT C. Generating shorter bases for hard random lattices[J]. Theory of Computing Systems, 2011, 48(3): 535–553. doi: 10.1007/s00224-010-9278-3.
    [19] MICCIANCIO D and PEIKERT C. Trapdoors for lattices: Simpler, tighter, faster, smaller[C]. The 31st Annual International Conference on the Theory and Applications of Cryptographic Techniques, Cambridge, UK, 2012: 700–718.
    [20] AGRAWAL S, BONEH D, and BOYEN X. Lattice basis delegation in fixed dimension and shorter-Ciphertext hierarchical IBE[C]. The 30th Annual Cryptology Conference, Santa Barbara, USA, 2010: 98–115.
  • 加载中
表(1)
计量
  • 文章访问数:  598
  • HTML全文浏览量:  246
  • PDF下载量:  110
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-03-14
  • 修回日期:  2023-07-12
  • 网络出版日期:  2023-07-21
  • 刊出日期:  2024-02-29

目录

    /

    返回文章
    返回