高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

低面积与低延迟开销的三节点翻转容忍锁存器设计

闫爱斌 申震 崔杰 黄正峰

闫爱斌, 申震, 崔杰, 黄正峰. 低面积与低延迟开销的三节点翻转容忍锁存器设计[J]. 电子与信息学报, 2023, 45(9): 3272-3283. doi: 10.11999/JEIT230114
引用本文: 闫爱斌, 申震, 崔杰, 黄正峰. 低面积与低延迟开销的三节点翻转容忍锁存器设计[J]. 电子与信息学报, 2023, 45(9): 3272-3283. doi: 10.11999/JEIT230114
YAN Aibin, SHEN Zhen, CUI Jie, HUANG Zhengfeng. Design of a Low-area and Low-delay Triple-Node-Upset Tolerant Latch[J]. Journal of Electronics & Information Technology, 2023, 45(9): 3272-3283. doi: 10.11999/JEIT230114
Citation: YAN Aibin, SHEN Zhen, CUI Jie, HUANG Zhengfeng. Design of a Low-area and Low-delay Triple-Node-Upset Tolerant Latch[J]. Journal of Electronics & Information Technology, 2023, 45(9): 3272-3283. doi: 10.11999/JEIT230114

低面积与低延迟开销的三节点翻转容忍锁存器设计

doi: 10.11999/JEIT230114
基金项目: 国家自然科学基金(62274052, 61974001)
详细信息
    作者简介:

    闫爱斌:男,博士,教授,研究方向为数字电路可靠性技术等

    申震:男,硕士生,研究方向为数字电路可靠性技术

    崔杰:男,博士,教授,研究方向为信息安全等

    黄正峰:男,博士,教授,研究方向为数字集成电路容错设计等

    通讯作者:

    申震 193416760@qq.com

  • 中图分类号: TN43

Design of a Low-area and Low-delay Triple-Node-Upset Tolerant Latch

Funds: The National Natural Science Foundation of China (62274052, 61974001)
  • 摘要: 随着纳米级CMOS集成电路的不断发展,锁存器极易受恶劣的辐射环境影响,由此引发的多节点翻转问题越来越严重。该文提出一种基于双联互锁存储单元(DICE)和2级C单元的3节点翻转(TNU)容忍锁存器,该锁存器包括5个传输门、2个DICE和3个C单元。该锁存器具有较小的晶体管数量,大大减小了电路的硬件开销,实现低成本。每个DICE单元可用来容忍并恢复单节点翻转,而C单元具有错误拦截特性,可屏蔽由DICE单元传来的错误值。当任意3个节点翻转后,借助DICE单元和C单元,该锁存器可容忍该错误。基于集成电路仿真程序(HSPICE)的仿真结果表明,与先进的TNU加固锁存器设计相比,该锁存器的延迟平均降低了64.65%,延迟功耗面积积平均降低了65.07%。
  • 图  1  基本元件

    图  2  已有的加固结构

    图  3  本文所提锁存器原理图

    图  4  提出锁存器的版图设计

    图  5  无注错仿真图

    图  6  SNU注错实验

    图  7  DNU注错实验

    图  8  TNU注错实验

    图  9  温度和电压变化对锁存器延迟和功耗的影响

    图  10  晶体管工艺变化对锁存器延迟和功耗的影响

    表  1  锁存器可靠性对比结果

    锁存器抗SNU抗DNU抗TNU
    D锁存器
    FERST[7]
    ISEHL[19]
    TMR[20]
    HRUT[21]
    DNUR[18]
    TNUTL[22]
    RHLD[11]
    LCTNUT[13]
    TNURL[1]
    本文
    下载: 导出CSV

    表  2  锁存器性能参数对比结果

    锁存器D-Q 延迟(ps)功耗(μW)面积(×10–4 nm2)DPAP (×10–6)
    D锁存器11.800.110.660.009
    FERST41.390.201.850.153
    ISEHL2.900.121.580.005
    TMR46.420.703.701.202
    HRUT58.230.221.980.254
    DNUR3.010.444.360.058
    TNUTL21.950.192.380.099
    RHLD101.860.635.413.472
    LCTNUT1.670.253.170.013
    TNURL5.200.398.450.171
    本文1.670.342.640.015
    下载: 导出CSV

    表  3  抗TNU锁存器的相对开销比较(%)

    锁存器DQ 延迟功耗面积(×10–4)DPAP
    TNUTL–92.3978.9510.92–84.85
    RHLD–98.36–46.03–51.20–99.57
    LCTNUT0.0036.00–16.7215.38
    TNURL–67.88–12.82–68.76–91.23
    平均–64.6514.03–31.44–65.07
    下载: 导出CSV

    表  4  抗TNU锁存器的静态功耗和动态功耗(μW)

    锁存器静态功耗动态功耗平均功耗
    TNUTL0.0500.1400.19
    RHLD0.0620.5680.63
    LCTNUT0.0750.1750.25
    TNURL0.0550.3350.39
    本文0.0580.2820.34
    下载: 导出CSV
  • [1] YAN Aibin, FENG Xiangfeng, HU Yuanjie, et al. Design of a triple-node-upset self-recoverable latch for aerospace applications in harsh radiation environments[J]. IEEE Transactions on Aerospace and Electronic Systems, 2020, 56(2): 1163–1171. doi: 10.1109/TAES.2019.2925448
    [2] 黄正峰, 郭阳, 李雪筠, 等. 单粒子四点翻转自恢复加固锁存器设计[J]. 计算机辅助设计与图形学学报, 2021, 33(4): 632–639. doi: 10.3724/SP.J.1089.2021.18573

    HUANG Zhengfeng, GUO Yang, LI Xuejun, et al. Single-event quadruple-upset self-recoverable latch design[J]. Journal of Computer-Aided Design &Computer Graphics, 2021, 33(4): 632–639. doi: 10.3724/SP.J.1089.2021.18573
    [3] 黄正峰, 曹迪, 崔建国, 等. 32 nm CMOS工艺的单粒子多点翻转加固锁存器设计[J]. 计算机辅助设计与图形学学报, 2021, 33(3): 346–355. doi: 10.3724/SP.J.1089.2021.18385

    HUANG Zhengfeng, CAO Di, CUI Jianguo, et al. Design of multiple node upset tolerant latch in 32 nm CMOS technology[J]. Journal of Computer-Aided Design &Computer Graphics, 2021, 33(3): 346–355. doi: 10.3724/SP.J.1089.2021.18385
    [4] 郭靖, 李强, 宿晓慧, 等. 新型RHBD抗多节点翻转锁存器设计[J]. 计算机辅助设计与图形学学报, 2021, 33(6): 963–973. doi: 10.3724/SP.J.1089.2021.18615

    GUO Jing, LI Qiang, SU Xiaohui, et al. Novel radiation hardening by design latch for tolerating multiple-node upset[J]. Journal of Computer-Aided Design &Computer Graphics, 2021, 33(6): 963–973. doi: 10.3724/SP.J.1089.2021.18615
    [5] 黄正峰, 潘尚杰, 曹剑飞, 等. 32nm CMOS 工艺三点翻转自恢复锁存器设计[J]. 电子学报, 2021, 49(2): 394–400. doi: 10.12263/DZXB.20200530

    HUANG Zhengfeng, PAN Shangjie, CAO Jianfei, et al. Design of triple-node-upset self-recovery latch in 32 nm CMOS technology[J]. Acta Electronica Sinica, 2021, 49(2): 394–400. doi: 10.12263/DZXB.20200530
    [6] YAN Aibin, HU Yuanjie, CUI Jie, et al. Information assurance through redundant design: A novel TNU error-resilient latch for harsh radiation environment[J]. IEEE Transactions on Computers, 2020, 69(6): 789–799. doi: 10.1109/TC.2020.2966200
    [7] FAZELI M, MIREMADI S G, EJLALI A, et al. Low energy single event upset/single event transient-tolerant latch for deep submicron technologies[J]. IET Computers & Digital Techniques, 2009, 3(3): 289–303. doi: 10.1049/iet-cdt.2008.0099
    [8] EFTAXIOPOULOS N, AXELOS N, ZERVAKIS G, et al. Delta DICE: A double node upset resilient latch[C]. The 58th International Midwest Symposium on Circuits and Systems, Fort Collins, USA, 2015: 1–4.
    [9] KATSAROU K and TSIATOUHAS Y. Double node charge sharing SEU tolerant latch design[C]. The IEEE 20th International On-Line Testing Symposium, Platja d'Aro, Spain, 2014: 122–127.
    [10] XU Hui and ZENG Yun. Circuit and layout combination technique to enhance multiple nodes upset tolerance in latches[J]. IEICE Electronics Express, 2015, 12(9): 20150286. doi: 10.1587/elex.12.20150286
    [11] WATKINS A and TRAGOUDAS S. Radiation hardened latch designs for double and triple node upsets[J]. IEEE Transactions on Emerging Topics in Computing, 2020, 8(3): 616–626. doi: 10.1109/TETC.2017.2776285
    [12] CALIN T, NICOLAIDIS M, and VELAZCO R. Upset hardened memory design for submicron CMOS technology[J]. IEEE Transactions on Nuclear Science, 1996, 43(6): 2874–2878. doi: 10.1109/23.556880
    [13] YAN Aibin, LAI Chaoping, ZHANG Yinlei, et al. Novel low cost, double-and-triple-node-upset-tolerant latch designs for nano-scale CMOS[J]. IEEE Transactions on Emerging Topics in Computing, 2021, 9(1): 520–533. doi: 10.1109/TETC.2018.2871861
    [14] KUMAR C I and ANAND B. A highly reliable and energy-efficient triple-node-upset-tolerant latch design[J]. IEEE Transactions on Nuclear Science, 2019, 66(10): 2196–2206. doi: 10.1109/TNS.2019.2939380
    [15] YAN Aibin, XU Zhelong, FENG Xiangfeng, et al. Novel quadruple-node-upset-tolerant latch designs with optimized overhead for reliable computing in harsh radiation environments[J]. IEEE Transactions on Emerging Topics in Computing, 2022, 10(1): 404–413. doi: 10.1109/TETC.2020.3025584
    [16] YAN Aibin, LI Zhixing, CUI Jie, et al. Designs of two quadruple-node-upset self-recoverable latches for highly robust computing in harsh radiation environments[J]. IEEE Transactions on Aerospace and Electronic Systems, 2023, 59(3): 2885–2897. doi: 10.1109/TAES.2022.3219372
    [17] 黄正峰, 姚慧杰, 李先东, 等. 一种高性能低功耗的双节点翻转加固锁存器[J]. 合肥工业大学学报:自然科学版, 2019, 42(12): 1649–1654. doi: 10.3969/j.issn.1003-5060.2019.12.012

    HUANG Zhengfeng, YAO Huijie, LI Xiandong, et al. HLDRL latch: A high performance, low cost, double node upset resilient latch[J]. Journal of Hefei University of Technology:Natural Science, 2019, 42(12): 1649–1654. doi: 10.3969/j.issn.1003-5060.2019.12.012
    [18] YAN Aibin, HUANG Zhengfeng, YI Maoxiang, et al. Double-node-upset-resilient latch design for nanoscale CMOS technology[J]. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 2017, 25(6): 1978–1982. doi: 10.1109/TVLSI.2017.2655079
    [19] LIANG Huaguo, WANG Zhi, HUANG Zhengfeng, et al. Design of a radiation hardened latch for low-power circuits[C]. The IEEE 23rd Asian Test Symposium, Hangzhou, China, 2014: 19–24.
    [20] SHE Xiaoxuan and MCELVAIN K S. Time multiplexed triple modular redundancy for single event upset mitigation[J]. IEEE Transactions on Nuclear Science, 2009, 56(4): 2443–2448. doi: 10.1109/TNS.2009.2021656
    [21] RAJAEI R, TABANDEH M, and FAZELI M. Single event multiple upset (SEMU) tolerant latch designs in presence of process and temperature variations[J]. Journal of Circuits, Systems and Computers, 2015, 24(1): 1550007. doi: 10.1142/S0218126615500073
    [22] LIU Xin. Multiple node upset-tolerant latch design[J]. IEEE Transactions on Device and Materials Reliability, 2019, 19(2): 387–392. doi: 10.1109/TDMR.2019.2912811
  • 加载中
图(10) / 表(4)
计量
  • 文章访问数:  404
  • HTML全文浏览量:  198
  • PDF下载量:  69
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-02-28
  • 修回日期:  2023-07-04
  • 网络出版日期:  2023-07-11
  • 刊出日期:  2023-09-27

目录

    /

    返回文章
    返回