高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

宽带复合双基地雷达舰船目标长度估计方法

艾小锋 邱梦奇 胡旖航 徐志明 赵锋

艾小锋, 邱梦奇, 胡旖航, 徐志明, 赵锋. 宽带复合双基地雷达舰船目标长度估计方法[J]. 电子与信息学报, 2024, 46(3): 944-951. doi: 10.11999/JEIT230088
引用本文: 艾小锋, 邱梦奇, 胡旖航, 徐志明, 赵锋. 宽带复合双基地雷达舰船目标长度估计方法[J]. 电子与信息学报, 2024, 46(3): 944-951. doi: 10.11999/JEIT230088
AI Xiaofeng, QIU Mengqi, HU Yihang, XU Zhiming, ZHAO Feng. Instantaneous Length Estimation of Ships through Wideband Composite Bistatic Radar[J]. Journal of Electronics & Information Technology, 2024, 46(3): 944-951. doi: 10.11999/JEIT230088
Citation: AI Xiaofeng, QIU Mengqi, HU Yihang, XU Zhiming, ZHAO Feng. Instantaneous Length Estimation of Ships through Wideband Composite Bistatic Radar[J]. Journal of Electronics & Information Technology, 2024, 46(3): 944-951. doi: 10.11999/JEIT230088

宽带复合双基地雷达舰船目标长度估计方法

doi: 10.11999/JEIT230088
基金项目: 国家自然科学基金(62071475, 61890542)
详细信息
    作者简介:

    艾小锋:男,副研究员,研究方向为双/多基地雷达目标探测与识别

    邱梦奇:女,硕士,研究方向为电子信息系统建模仿真与评估

    胡旖航:女,硕士生,研究方向为双基地雷达目标散射特性和特征提取

    徐志明:男,助理研究员,研究方向为双基地雷达目标特性与特征提取

    赵锋:男,教授,研究方向为电子信息系统建模仿真与评估

    通讯作者:

    邱梦奇 mengqiq21@163.com

  • 中图分类号: TN951; TN957.51

Instantaneous Length Estimation of Ships through Wideband Composite Bistatic Radar

Funds: The National Natural Science Foundation of China (62071475, 61890542)
  • 摘要: 舰船目标长度特征对舰船目标识别具有重要作用,该文提出一种基于宽带复合双基地雷达联合观测的舰船目标长度估计方法。该方法综合利用单/双基地雷达高分辨距离像(HRRPs)长度,结合双基地雷达-舰船之间的空间关系求解,实现了单次测量估计舰船目标的实际长度,并分析了各种误差因素和几何构型条件下的估计误差。典型场景动态仿真证明了所提方法的有效性,结果表明在高分辨距离像长度误差小于5%条件下,舰船目标长度估计误差小于5%,为舰船目标特征提取与识别提供了新思路。
  • 图  1  T/R-R双基地雷达联合观测模型

    图  2  雷达视线俯仰角精确求解流程

    图  3  双基地雷达舰船目标实际长度估计流程

    图  4  测量误差对舰船目标长度估计误差的影响

    图  5  目标长度估计误差随俯仰角(30°~60°)变化

    图  6  长度估计误差

    图  7  仿真场景及目标模型

    图  8  获取1维距离像序列

    图  9  双基地雷达舰船目标长度特征提取误差

    表  1  测量误差仿真参数设置

    参数取值
    入射俯仰角(°)45
    接收俯仰角(°)45
    双基地角(°)60
    T/R站1维距离像长度(m)70.7
    R站1维距离像长度(m)35.4
    舰船目标长度(m)100
    入射俯仰角误差(°)0~0.4
    接收俯仰角误差 (°)0~0.4
    双基地角误差(°)0~0.4
    T/R站1维距离像长度误差 (m)0~10
    R站1维距离像长度误差(m)0~10
    下载: 导出CSV

    表  2  观测模型仿真参数设置

    参数取值
    入射俯仰角(°)0~90
    接收俯仰角(°)0~90
    入射方位角(°)–45
    接收方位角(°)45
    舰船目标长度(m)100
    入射俯仰角误差(°)0.2
    接收俯仰角误差 (°)0.2
    双基地角误差(°)0.2
    T/R站1维距离像长度误差 (m)1
    R站1维距离像长度误差(m)1
    下载: 导出CSV

    表  3  仿真参数设置

    参数数值
    入射俯仰角(°)30
    接收俯仰角(°)60
    天线孔径(m)0.2
    中心频率(GHz)10
    工作带宽(GHz)1
    信噪比(dB)0:1:20
    仿真次数5 000
    下载: 导出CSV

    表  4  仿真参数设置

    参数T/R站R站
    初始位置(km)$ \left[ {20\sqrt 3 , - 20,20} \right] $$ \left[ {20\sqrt 3 ,20,20} \right] $
    结束位置(km)$ \left[5\sqrt{3},-5,20\right] $$ \left[ {5\sqrt 3 ,5,20} \right] $
    速度(km/h)900900
    时间(s)120120
    下载: 导出CSV

    表  5  舰船长度估计误差

    参数均值(m)标准差(m)
    R站1维距离像长度误差4.791.11
    T/R站1维距离像长度误差5.221.11
    舰船长度误差7.833.35
    下载: 导出CSV

    表  6  舰船目标真实长度特征提取方法对比

    本文方法文献[2]方法
    测量
    参数
    入射俯仰角
    接收俯仰角
    双基地角
    入射方向投影长度
    接收方向投影长度
    入射俯仰角
    舰船航向
    入射方向投影长度
    测量
    次数
    单次测量连续跟踪
    优缺点通过单次测量估计目标实际长度,不需估计舰船航向和舰首方向,场景适应能力更强,稳定性更好。系统结构较复杂。通过连续跟踪估计航向,航向替代舰首方向,但舰首方向不一定为运动轨迹切线,机动转弯、逃逸等过程中相差很远,误差会很大。系统结构较简单。
    下载: 导出CSV
  • [1] 关键, 姜星宇, 刘宁波, 等. 海杂波中目标分数域谱范数特征检测方法[J/OL]. 电子与信息学报. https://jeit.ac.cn/cn/article/doi/10.11999/JEIT220667, 2023.

    GUAN Jian, JIANG Xingyu, LIU Ningbo, et al. Spectral norm feature detection method in FrFT domain of targets in sea clutter[J/OL]. Journal of Electronics & Information Technology. https://jeit.ac.cn/cn/article/doi/10.11999/JEIT220667, 2023.
    [2] 魏存伟, 段发阶, 刘先康. 基于宽带雷达HRRP舰船目标长度估计算法[J]. 系统工程与电子技术, 2018, 40(9): 1960–1965. doi: 10.3969/j.issn.1001-506X.2018.09.10.

    WEI Cunwei, DUAN Fajie, and LIU Xiankang. Length estimation method of ship target based on wide-band radar's HRRP[J]. Systems Engineering and Electronics, 2018, 40(9): 1960–1965. doi: 10.3969/j.issn.1001-506X.2018.09.10.
    [3] QI Xiaoyu, XU Runtian, LI Yanfang, et al. A method for estimating true length of targets based on track information and wideband high-resolution range profile[C]. 2021 IEEE 5th Information Technology, Networking, Electronic and Automation Control Conference (ITNEC), Xi'an, China, 2021: 178–184.
    [4] 李璐, 杜兰, 何浩男, 等. 基于深度森林的多级特征融合SAR目标识别[J]. 电子与信息学报, 2021, 43(3): 606–614. doi: 10.11999/JEIT200685.

    LI Lu, DU Lan, HE Haonan, et al. Multi-level feature fusion SAR automatic target recognition based on deep forest[J]. Journal of Electronics &Information Technology, 2021, 43(3): 606–614. doi: 10.11999/JEIT200685.
    [5] GU Dandan and XU Xiaojian. Multi-feature extraction of ships from SAR images[C]. 6th International Congress on Image and Signal Processing (CISP), Hangzhou, China, 2013: 454–458.
    [6] HU Guangli, XU Cheng, LI Chengcheng, et al. Geometrical features extraction for ship target based on SAR images[C]. 2014 7th International Congress on Image and Signal Processing, Dalian, China, 2014: 788–792.
    [7] STASOLLA M and GREIDANUS H. The exploitation of Sentinel-1 images for vessel size estimation[J]. Remote Sensing Letters, 2016, 7(12): 1219–1228. doi: 10.1080/2150704X.2016.1226522.
    [8] LI Boying, LIU Bin, GUO Weiwei, et al. Ship size extraction for Sentinel-1 images based on dual-polarization fusion and nonlinear regression: Push error under one pixel[J]. IEEE Transactions on Geoscience and Remote Sensing, 2018, 56(8): 4887–4905. doi: 10.1109/TGRS.2018.2841882.
    [9] REN Yibin, LI Xiaofeng, and XU Huan. A deep learning model to extract ship size from sentinel-1 SAR images[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 1–14. doi: 10.1109/TGRS.2021.3063216.
    [10] PASTINA D, BUCCIARELLI M, and LOMBARDO P. Multistatic and MIMO distributed ISAR for enhanced cross-range resolution of rotating targets[J]. IEEE Transactions on Geoscience and Remote Sensing, 2010, 48(8): 3300–3317. doi: 10.1109/TGRS.2010.2043740.
    [11] ZHANG Min, ZHAO Yanwei, ZHAO Ye, et al. A bistatic synthetic aperture radar imagery simulation of maritime scene using the extended nonlinear chirp scaling algorithm[J]. IEEE Transactions on Aerospace and Electronic Systems, 2013, 49(3): 2046–2054. doi: 10.1109/TAES.2013.6558038.
    [12] ZHANG Junqiu and WANG Yong. A three-dimensional imaging method of ship target via multistatic distributed InISAR[J]. IEEE Geoscience and Remote Sensing Letters, 2022, 19: 1–5. doi: 10.1109/LGRS.2022.3195362.
    [13] QIAN Guangzhao and WANG Yong. Monostatic-equivalent algorithm via Taylor expansion for BiSAR ship target imaging[J]. IEEE Transactions on Geoscience and Remote Sensing, 2023, 61: 1–19. doi: 10.1109/TGRS.2022.3233384.
    [14] LI Zhongyu, ZHANG Xiaodong, YANG Qing, et al. Hybrid SAR-ISAR image formation via joint FrFT-WVD processing for BFSAR ship target high-resolution imaging[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 1–13. doi: 10.1109/TGRS.2021.3117280.
    [15] AI Xiaofeng, HUANG Yan, ZHAO Feng, et al. Imaging of spinning targets via narrow-band T/R-R bistatic radars[J]. IEEE Geoscience and Remote Sensing Letters, 2013, 10(2): 362–366. doi: 10.1109/LGRS.2012.2205893.
    [16] YU Lianqing, LI Yun, and YANG Yuhao. Method of aerial target length extraction based on high resolution range profile[C]. 2019 IEEE International Conference on Signal, Information and Data Processing (ICSIDP), Chongqing, China, 2019: 1–5.
  • 加载中
图(9) / 表(6)
计量
  • 文章访问数:  313
  • HTML全文浏览量:  170
  • PDF下载量:  41
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-02-22
  • 修回日期:  2023-06-10
  • 网络出版日期:  2023-06-17
  • 刊出日期:  2024-03-27

目录

    /

    返回文章
    返回