高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

重叠阵元时分复用MIMO雷达多目标参数估计方法研究

田丰 刘万 符渭波 张浩宇

田丰, 刘万, 符渭波, 张浩宇. 重叠阵元时分复用MIMO雷达多目标参数估计方法研究[J]. 电子与信息学报, 2024, 46(1): 229-239. doi: 10.11999/JEIT230039
引用本文: 田丰, 刘万, 符渭波, 张浩宇. 重叠阵元时分复用MIMO雷达多目标参数估计方法研究[J]. 电子与信息学报, 2024, 46(1): 229-239. doi: 10.11999/JEIT230039
TIAN Feng, LIU Wan, FU Weibo, ZHANG Haoyu. Research on Multi-target Parameter Estimation Method for Overlapping-element Time Division Multiplexing MIMO Radar[J]. Journal of Electronics & Information Technology, 2024, 46(1): 229-239. doi: 10.11999/JEIT230039
Citation: TIAN Feng, LIU Wan, FU Weibo, ZHANG Haoyu. Research on Multi-target Parameter Estimation Method for Overlapping-element Time Division Multiplexing MIMO Radar[J]. Journal of Electronics & Information Technology, 2024, 46(1): 229-239. doi: 10.11999/JEIT230039

重叠阵元时分复用MIMO雷达多目标参数估计方法研究

doi: 10.11999/JEIT230039
基金项目: 陕西省科技计划(2020GY-029)
详细信息
    作者简介:

    田丰:男,教授,研究方向为通信信号处理等

    刘万:男,硕士生,研究方向为雷达信号处理

    符渭波:男,高级工程师,研究方向为MIMO雷达信号处理、阵列信号处理等

    张浩宇:男,硕士生,研究方向为雷达信号处理

    通讯作者:

    田丰 tianfeng@xust.edu.cn

  • 中图分类号: TN958

Research on Multi-target Parameter Estimation Method for Overlapping-element Time Division Multiplexing MIMO Radar

Funds: The Project of Science and Technology of Shaanxi (2020GY-029)
  • 摘要: 针对多普勒-角度耦合和速度模糊问题,该文提出一种基于重叠阵元MIMO阵列的多目标参数估计方法。该方法基于虚拟孔径原理,在传统MIMO天线阵列中引入重叠阵元,构建重叠阵元MIMO天线阵列。通过在角度快速傅里叶变换(FFT)算法中引入循环迭代的方法估计阵列位置参数,利用重叠阵元回波信号的相位差值进行频率估计。同时,引入频谱搬移方法对速度区间进行转换,实现多目标的距离和速度估计。通过蒙特卡罗仿真实验,信噪比15 dB 的条件下,解模糊正确率为100%,速度误差为0.1 m/s,角度误差为0.1°。基于城市交通场景采集的车辆数据集进行测试,测试结果表明,该方法能够实现对车辆目标的速度和角度精确估计,可满足交通雷达对车辆信息监测的实时性和准确性需求。
  • 图  1  重叠阵元MIMO天线阵列

    图  2  TDM-MIMO发射波形

    图  3  速度模糊模型

    图  4  搬移后的速度模糊模型

    图  5  算法流程图

    图  6  2维频谱图

    图  7  速度解模糊算法性能

    图  8  目标3的角度波形图

    图  9  多目标结果图

    图  10  实测场景

    图  11  2维频谱图

    图  12  多目标结果图

    表  1  毫米波雷达参数

    雷达参数仿真数值实测数值
    载频${f_0}$(GHz)6060
    调制周期$T$(μs)4545
    调频带宽$B$(MHz)200200
    慢时间维${N_d}$128128
    距离分辨率(${\rm{m}}$)0.750.75
    最大探测距离(${\rm{m}}$)384384
    速度分辨率(${\rm{m}}/{\rm{s}}$)0.1080.108
    最大不模糊速度(${\rm{m}}/{\rm{s}}$)±20±20
    角度分辨率(°)2.72.7
    下载: 导出CSV

    表  2  模拟目标参数

    目标参数目标距离(m)目标速度(m/s)目标角度(°)
    目标1185–9
    目标235150
    目标390–2015
    下载: 导出CSV

    表  3  多目标仿真结果

    目标参数距离测量值(m)模糊速度(m/s)模糊数速度测量值(m/s)角度测量值(°)
    目标118.04.9904.99–9.05
    目标234.51.19115.080
    目标390.57.70–2–20.0715.03
    下载: 导出CSV

    表  4  目标参数

    目标参数目标1目标2
    真实距离(m)4015
    真实速度(m/s)1710.5
    真实角度(°)–1–8
    距离测量值(m)39.7515
    模糊速度(m/s)3.1510.53
    解得模糊数10
    速度测量值(m/s)16.9310.53
    角度测量值(°)–0.85–7.87
    下载: 导出CSV
  • [1] SUN Shunqiao, PETROPULU A P, and POOR H V. MIMO radar for advanced driver-assistance systems and autonomous driving: Advantages and challenges[J]. IEEE Signal Processing Magazine, 2020, 37(4): 98–117. doi: 10.1109/MSP.2020.2978507
    [2] ROOS F, BECHTER J, KNILL C, et al. Radar sensors for autonomous driving: Modulation schemes and interference mitigation[J]. IEEE Microwave Magazine, 2019, 20(9): 58–72. doi: 10.1109/MMM.2019.2922120
    [3] WALDSCHMIDT C, HASCH J, and MENZEL W. Automotive radar — from first efforts to future systems[J]. IEEE Journal of Microwaves, 2021, 1(1): 135–148. doi: 10.1109/JMW.2020.3033616
    [4] HU Xueyao, LU Man, LI Yang, et al. Motion compensation for TDM MIMO radar by sparse reconstruction[J]. Electronics Letters, 2017, 53(24): 1604–1606. doi: 10.1049/el.2017.3524
    [5] BECHTER J, ROOS F, and WALDSCHMIDT C. Compensation of motion-induced phase errors in TDM MIMO radars[J]. IEEE Microwave and Wireless Components Letters, 2017, 27(12): 1164–1166. doi: 10.1109/LMWC.2017.2751301
    [6] LIN Yi, SUN Zhanshan, GUO Min, et al. Phase compensation method based on reference-element for SAA FMCW radar[J]. IEEE Geoscience and Remote Sensing Letters, 2021, 18(12): 2097–2101. doi: 10.1109/LGRS.2020.3014363
    [7] HU Xueyao, LI Yand, LU Man, et al. A multi-carrier-frequency random-transmission chirp sequence for TDM MIMO automotive radar[J]. IEEE Transactions on Vehicular Technology, 2019, 68(4): 3672–3685. doi: 10.1109/TVT.2019.2900357
    [8] HÄFNER S and THOMÄ R. Compensation of motion-induced phase errors and enhancement of Doppler unambiguity in TDM-MIMO systems by model-based estimation[J]. IEEE Sensors Letters, 2020, 4(10): 7003504. doi: 10.1109/LSENS.2020.3020700
    [9] NEEMAT S, KRASNOV O, VAN DER ZWAN F, et al. Decoupling the Doppler ambiguity interval from the maximum operational range and range-resolution in FMCW radars[J]. IEEE Sensors Journal, 2020, 20(11): 5992–6003. doi: 10.1109/JSEN.2020.2972152
    [10] JUNG J, LIM S, KIM S C, et al. Solving Doppler-angle ambiguity of BPSK-MIMO FMCW radar system[J]. IEEE Access, 2021, 9: 120347–120357. doi: 10.1109/ACCESS.2021.3108783
    [11] NGUYEN M Q, FEGER R, BECHTER J, et al. Fast-chirp FDMA MIMO radar system using range-division multiple-access and Doppler-division multiple-access[J]. IEEE Transactions on Microwave Theory and Techniques, 2021, 69(1): 1136–1148. doi: 10.1109/TMTT.2020.3039795
    [12] 王元恺, 肖泽龙, 许建中, 等. 一种改进的FMCW雷达线性调频序列波形[J]. 电子学报, 2017, 45(6): 1288–1293. doi: 10.3969/j.issn.0372-2112.2017.06.002

    WANG Yuankai, XIAO Zelong, XU Jianzhong, et al. A modified chirp sequence waveform for FMCW radar[J]. Acta Electronica Sinica, 2017, 45(6): 1288–1293. doi: 10.3969/j.issn.0372-2112.2017.06.002
    [13] 周奇特, 李朝晖. 组合时延估计及人工时延方法用于脉冲相干多普勒测速去模糊[J]. 声学学报, 2018, 43(4): 582–591. doi: 10.15949/j.cnki.0371-0025.2018.04.018

    ZHOU Qite and LI Chaohui. An dealiasing method for pulse-to-pulse coherent Doppler velocimetry using combining time delay estimation and artificial delay[J]. Acta Acustica, 2018, 43(4): 582–591. doi: 10.15949/j.cnki.0371-0025.2018.04.018
    [14] XU Luzhou, LIEN J, and LI Jian. Doppler-range processing for enhanced high-speed moving target detection using LFMCW automotive radar[J]. IEEE Transactions on Aerospace and Electronic Systems, 2022, 58(1): 568–580. doi: 10.1109/TAES.2021.3101768
    [15] SCHERHÄUFL M, HAMMER F, PICHLER-SCHEDER M, et al. Radar distance measurement with Viterbi algorithm to resolve phase ambiguity[J]. IEEE Transactions on Microwave Theory and Techniques, 2020, 68(9): 3784–3793. doi: 10.1109/TMTT.2020.2985357
    [16] GONZALEZ H A, LIU Chen, VOGGINGER B, et al. Doppler disambiguation in MIMO FMCW radars with binary phase modulation[J]. IET Radar, Sonar & Navigation, 2021, 15(8): 884–901. doi: 10.1049/rsn2.12063
    [17] BARAL A B and TORLAK M. Joint Doppler frequency and direction of arrival estimation for TDM MIMO automotive radars[J]. IEEE Journal of Selected Topics in Signal Processing, 2021, 15(4): 980–995. doi: 10.1109/JSTSP.2021.3073572
    [18] XIONG Xiangyu, LIU Hui, DENG Zhenmiao, et al. Micro-Doppler ambiguity resolution with variable shrinkage ratio based on time-delayed cross correlation processing for wideband radar[J]. IEEE Transactions on Geoscience and Remote Sensing, 2019, 57(4): 1906–1917. doi: 10.1109/TGRS.2018.2870149
    [19] 王超, 王岩飞, 王琦, 等. 基于回波序列最小二乘拟合的高分辨率SAR运动目标速度估计[J]. 电子与信息学报, 2019, 41(5): 1055–1062. doi: 10.11999/JEIT180695

    WANG Chao, WANG Yanfei, WANG Qi, et al. Velocity estimation of moving targets based on least square fitting of high-resolution SAR echo sequences[J]. Journal of Electronics &Information Technology, 2019, 41(5): 1055–1062. doi: 10.11999/JEIT180695
    [20] SUN Peilin, Tang Jun, and WAN Shuang. Cramer-Rao bound of joint estimation of target location and velocity for coherent MIMO radar[J]. Journal of Systems Engineering and Electronics, 2014, 25(4): 566–572. doi: 10.1109/JSEE.2014.00066
  • 加载中
图(12) / 表(4)
计量
  • 文章访问数:  462
  • HTML全文浏览量:  369
  • PDF下载量:  87
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-02-01
  • 修回日期:  2023-08-21
  • 网络出版日期:  2023-08-23
  • 刊出日期:  2024-01-17

目录

    /

    返回文章
    返回