高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

车联网POI查询中的位置隐私和查询隐私联合保护机制

赵国锋 吴昊 王杉杉 徐川 唐雯钰

赵国锋, 吴昊, 王杉杉, 徐川, 唐雯钰. 车联网POI查询中的位置隐私和查询隐私联合保护机制[J]. 电子与信息学报, 2024, 46(1): 155-164. doi: 10.11999/JEIT221599
引用本文: 赵国锋, 吴昊, 王杉杉, 徐川, 唐雯钰. 车联网POI查询中的位置隐私和查询隐私联合保护机制[J]. 电子与信息学报, 2024, 46(1): 155-164. doi: 10.11999/JEIT221599
ZHAO Guofeng, WU Hao, WANG Shanshan, XU Chuan, TANG Wenyu. A Location Privacy and Query Privacy Joint Protection Scheme for POI Query in Vehicular Networks[J]. Journal of Electronics & Information Technology, 2024, 46(1): 155-164. doi: 10.11999/JEIT221599
Citation: ZHAO Guofeng, WU Hao, WANG Shanshan, XU Chuan, TANG Wenyu. A Location Privacy and Query Privacy Joint Protection Scheme for POI Query in Vehicular Networks[J]. Journal of Electronics & Information Technology, 2024, 46(1): 155-164. doi: 10.11999/JEIT221599

车联网POI查询中的位置隐私和查询隐私联合保护机制

doi: 10.11999/JEIT221599
基金项目: 国家自然科学基金(62171070),重庆市博士后科学基金(CSTB2022NSCQ-BHX0043),中国博士后科学基金(2023MD734136)
详细信息
    作者简介:

    赵国锋:男,博士,教授,研究方向为天地一体化网络、工业物联网和网络安全

    吴昊:男,硕士生,研究方向为LBS中的位置隐私保护和查询隐私保护

    王杉杉:女,博士生,研究方向为空间网络安全和格密码

    徐川:男,博士,教授,研究方向为天地一体化网络、工业互联网和网络安全与管理

    唐雯钰:女,硕士生,研究方向为NDN网络安全

    通讯作者:

    赵国锋 zhaogf@cqupt.edu.cn

  • 中图分类号: TN918.91

A Location Privacy and Query Privacy Joint Protection Scheme for POI Query in Vehicular Networks

Funds: The National Natural Science Foundation of China (62171070), Chongqing Post-Doctoral Science Fund Project (CSTB2022NSCQ-BHX0043), China Postdoctoral Science Foundation (2023MD734136)
  • 摘要: 在车联网中,基于位置的服务(LBS)的兴趣点(POI)查询被广泛用于车载应用中。但是,由于攻击者容易获取车辆位置、查询内容以及其它额外信息,单独对位置隐私或查询隐私进行保护很难保障车载用户的隐私安全,使得对位置隐私和查询隐私开展联合保护越发关键。为此,该文提出一种基于虚拟序列的位置隐私和查询隐私联合保护机制。首先根据POI查询的限制,分析位置隐私和查询隐私的相关性,运用欧几里得距离和关联规则算法对其建模描述,得到相关性判断模型;然后基于虚拟序列,根据影响隐私保护的因素和真实查询的相关性值,将联合保护转化为虚拟序列的选择问题,建立联合保护优化模型,得到匿名程度高且匿名区域大的匿名查询集,防止攻击者识别出真实查询。最后,实验结果表明,与现有方案相比,所提联合保护机制能抵御针对位置隐私和查询隐私的联合攻击(语义范围攻击、时间关联攻击和长期观察攻击),能更有效地保护用户的LBS隐私。
  • 图  1  车联网中LBS系统场景

    图  2  语义相关性

    图  3  时空属性相关性

    图  4  兴趣模型

    图  5  k值对具有3种相关性的查询个数的影响

    图  6  k值对匿名查询集匿名程度的影响

    图  7  k值对匿名查询集分散程度的影响

    表  1  仿真参数

    参数符号数值
    AOR半径(km)R3
    时间段t(8:00-9:00),(13:00-14:00),(21:00-22:00)
    匿名查询集的大小k{3,6,9,12,15,18,21}
    安全距离(m)${d_{{\text{safe}}}}$100
    下载: 导出CSV
  • [1] XU Chuan, LUO Li, DING Yingyi, et al. Personalized location privacy protection for location-based services in vehicular networks[J]. IEEE Wireless Communications Letters, 2020, 9(10): 1633–1637. doi: 10.1109/LWC.2020.2999524
    [2] 冯登国, 张敏, 叶宇桐. 基于差分隐私模型的位置轨迹发布技术研究[J]. 电子与信息学报, 2020, 42(1): 74–88. doi: 10.11999/JEIT190632

    FENG Dengguo, ZHANG Min, and YE Yutong. Research on differentially private trajectory data publishing[J]. Journal of Electronics &Information Technology, 2020, 42(1): 74–88. doi: 10.11999/JEIT190632
    [3] KUANG Li, HE Shuai, FAN Yuyou, et al. T-SR: A location privacy protection algorithm based on POI query[J]. IEEE Access, 2019, 7: 59491–59503. doi: 10.1109/ACCESS.2019.2913547
    [4] WANG Shengling, HU Qin, SUN Yunchuan, et al. Privacy preservation in location-based services[J]. IEEE Communications Magazine, 2018, 56(3): 134–140. doi: 10.1109/MCOM.2018.1700288
    [5] LI Xingxin, ZHU Youwen, and WANG Jian. Highly efficient privacy preserving location-based services with enhanced one-round blind filter[J]. IEEE Transactions on Emerging Topics in Computing, 2021, 9(4): 1803–1814. doi: 10.1109/TETC.2019.2926385
    [6] FAROUK F, ALKADY Y, and RIZK R. Efficient privacy-preserving scheme for location based services in VANET system[J]. IEEE Access, 2020, 8: 60101–60116. doi: 10.1109/ACCESS.2020.2982636
    [7] SHAHAM S, DING Ming, LIU Bo, et al. Privacy preservation in location-based services: A novel metric and attack model[J]. IEEE Transactions on Mobile Computing, 2021, 20(10): 3006–3019. doi: 10.1109/TMC.2020.2993599
    [8] PINGLEY A, ZHANG Nan, FU Xinwen, et al. Protection of query privacy for continuous location based services[C]. 2011 Proceedings IEEE INFOCOM, Shanghai, China, 2011: 1710–1718.
    [9] YADAV V K, ANDOLA N, VERMA S, et al. P2LBS: Privacy provisioning in location-based services[J]. IEEE Transactions on Services Computing, 2023, 16(1): 466–477. doi: 10.1109/TSC.2021.3123428
    [10] WU Zongda, LI Guiling, SHEN Shigen, et al. Constructing dummy query sequences to protect location privacy and query privacy in location-based services[J]. World Wide Web, 2021, 24(1): 25–49. doi: 10.1007/s11280-020-00830-x
    [11] NIU Ben, CHEN Yahong, WANG Zhibo, et al. Eclipse: Preserving differential location privacy against long-term observation attacks[J]. IEEE Transactions on Mobile Computing, 2022, 21(1): 125–138. doi: 10.1109/TMC.2020.3000730
    [12] HUA Jingyu, TONG Wei, XU Fengyuan, et al. A geo-indistinguishable location perturbation mechanism for location-based services supporting frequent queries[J]. IEEE Transactions on Information Forensics and Security, 2018, 13(5): 1155–1168. doi: 10.1109/TIFS.2017.2779402
    [13] ASUQUO P, CRUICKSHANK H, MORLEY J, et al. Security and privacy in location-based services for vehicular and mobile communications: An overview, challenges, and countermeasures[J]. IEEE Internet of Things Journal, 2018, 5(6): 4778–4802. doi: 10.1109/JIOT.2018.2820039
    [14] HAN Jiawei, PEI Jian, and YIN Yiwen. Mining frequent patterns without candidate generation[J]. ACM SIGMOD Record, 2000, 29(2): 1–12. doi: 10.1145/335191.335372
    [15] NYC. TLC Trip Record Data[EB/OL]. https://www1.nyc.gov/site/tlc/about/tlc-trip-record-data.page, 2022.
    [16] NIU Ben, LI Qinghua, ZHU Xiaoyan, et al. Achieving k-anonymity in privacy-aware location-based services[C]. IEEE INFOCOM 2014-IEEE Conference on Computer Communications, Toronto, Canada, 2014: 754–762.
    [17] ZHAO Ping, LIU Wuwu, ZHANG Guanglin, et al. Preserving privacy in WiFi localization with plausible dummy locations[J]. IEEE Transactions on Vehicular Technology, 2020, 69(10): 11909–11925. doi: 10.1109/TVT.2020.3006363
    [18] 百度. 百度地图[EB/OL]. https://lbsyun.baidu.com/, 2022.

    BAIDU. Baidu Maps[EB/OL]. https://lbsyun.baidu.com/, 2022.
    [19] 王洁, 王春茹, 马建峰, 等. 基于位置语义和查询概率的假位置选择算法[J]. 通信学报, 2020, 41(3): 53–61. doi: 10.11959/j.issn.1000-436x.2020061

    WANG Jie, WANG Chunru, MA Jianfeng, et al. Dummy location selection algorithm based on location semantics and query probability[J]. Journal on Communications, 2020, 41(3): 53–61. doi: 10.11959/j.issn.1000-436x.2020061
    [20] DEB K, PRATAP A, AGARWAL S, et al. A fast and elitist multiobjective genetic algorithm: NSGA-II[J]. IEEE Transactions on Evolutionary Computation, 2002, 6(2): 182–197. doi: 10.1109/4235.996017
    [21] NIU Ben, ZHU Xiaoyan, LI Weihao, et al. A personalized two-tier cloaking scheme for privacy-aware location-based services[C]. 2015 International Conference on Computing, Networking and Communications (ICNC), Garden Grove, USA, 2015: 94–98.
  • 加载中
图(7) / 表(1)
计量
  • 文章访问数:  416
  • HTML全文浏览量:  214
  • PDF下载量:  54
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-01-05
  • 修回日期:  2023-05-12
  • 网络出版日期:  2023-05-22
  • 刊出日期:  2024-01-17

目录

    /

    返回文章
    返回