高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

单脉冲测角的二维分级主旁瓣干扰联合抑制方法

张仁李 朱蕾 邱爽 盛卫星

张仁李, 朱蕾, 邱爽, 盛卫星. 单脉冲测角的二维分级主旁瓣干扰联合抑制方法[J]. 电子与信息学报, 2024, 46(1): 213-221. doi: 10.11999/JEIT221577
引用本文: 张仁李, 朱蕾, 邱爽, 盛卫星. 单脉冲测角的二维分级主旁瓣干扰联合抑制方法[J]. 电子与信息学报, 2024, 46(1): 213-221. doi: 10.11999/JEIT221577
ZHANG Renli, ZHU Lei, QIU Shuang, SHENG Weixing. Two-dimensional Hierarchical Mainlobe and Sidelobe Jamming Suppression Algorithm for Monopulse Angle Estimation[J]. Journal of Electronics & Information Technology, 2024, 46(1): 213-221. doi: 10.11999/JEIT221577
Citation: ZHANG Renli, ZHU Lei, QIU Shuang, SHENG Weixing. Two-dimensional Hierarchical Mainlobe and Sidelobe Jamming Suppression Algorithm for Monopulse Angle Estimation[J]. Journal of Electronics & Information Technology, 2024, 46(1): 213-221. doi: 10.11999/JEIT221577

单脉冲测角的二维分级主旁瓣干扰联合抑制方法

doi: 10.11999/JEIT221577
基金项目: 国家自然科学基金(61971224, 62001230)
详细信息
    作者简介:

    张仁李:男,博士,副教授,研究方向为阵列信号处理、雷达抗干扰等

    朱蕾:女,硕士生,研究方向为阵列信号处理

    邱爽:男,博士,研究方向为DOA估计、阵列信号处理等

    盛卫星:男,博士,教授,研究方向为智能天线、雷达系统、人工智能等

    通讯作者:

    张仁李 zhangrenli_nust@163.com

  • 中图分类号: TN972

Two-dimensional Hierarchical Mainlobe and Sidelobe Jamming Suppression Algorithm for Monopulse Angle Estimation

Funds: The National Natural Science Foundation of China (61971224, 62001230)
  • 摘要: 针对矩形平面阵列天线同时存在主、旁瓣干扰的单脉冲测角问题,该文设计了2维分级自适应单脉冲波束形成算法(TDHJ-ADBF)。TDHJ-ADBF算法将矩形平面阵分为方位维和俯仰维两个正交维度,采用2维分级处理架构:第1级处理在测角维进行,采用低运算量的压缩多重信号分类法对测角维主瓣干扰进行快速识别与方向估计,构造阻塞矩阵滤除主瓣干扰,获得仅含旁瓣干扰和噪声的协方差矩阵,进而对和、差波束方向图进行指向与鉴角曲线联合约束,完成测角维旁瓣干扰抑制与波束形成处理;第2级在非测角维对残留的测角维主瓣干扰进行抑制。通过2维分级处理实现主、旁瓣干扰联合对抗,并保持单脉冲测角的鉴角曲线线性度。仿真结果表明,TDHJ-ADBF算法实现了对主、旁瓣干扰联合抑制,具有高精度的单脉冲测角性能。
  • 图  1  均匀矩形平面阵模型

    图  2  TDHJ-ADBF算法流程图

    图  3  v维搜索区域划分

    图  4  C-MUSIC与MUSIC在u维与v维空间谱

    图  5  v维测角时第1级波束形成(v维)方向图

    图  6  v维测角时第2级波束形成(u维)方向图

    图  7  u维测角时第1级波束形成(u维)方向图

    图  8  u维测角时第2级波束形成(v维)方向图

    图  9  3种算法单脉冲测角结果

    表  1  仿真参数设置

    阵列参数目标参数干扰参数
    阵元数:M=N=16目标:方向(u,v) =(0.035, 0.002)干扰J1:方向(u,v)= (–0.086,0.086)/JNR1=28 dB
    波束指向:(u,v)= (0, 0)目标SNR=0 dB干扰J2:方向(u,v)= (0,0.342) /JNR2=30 dB
    阵元间距:λ/2干扰J3:方向(u,v)= (0.422,0) /JNR3=32 dB
    下载: 导出CSV

    表  2  C-MUSIC算法u维和v维正交性检验结果

    干扰u维估计
    干扰位置
    与原始噪声子空间的
    正交性值
    是否为u维主瓣干扰v维估计
    干扰位置
    与原始噪声子空间的
    正交性值
    是否为v维主瓣干扰
    J1u
    检验
    –0.0868194.8v
    检验
    0.08612230
    J20918.1–0.0580.185
    J30.0231.20906.899
    下载: 导出CSV

    表  3  100次权重计算运行时间(s)

    TDHJ-ADBFEADBFEMP-CMR
    运行时间0.61130.01861.4116
    下载: 导出CSV
  • [1] WANG Yu, ZHU Daiyin, JIN Guodong, et al. A robust digital beamforming on receive in elevation for airborne MIMO SAR system[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 5233619. doi: 10.1109/TGRS.2022.3199424
    [2] CHEN Peng, GAO Jingjie, and WANG Wei. Linear prediction-based covariance matrix reconstruction for robust adaptive beamforming[J]. IEEE Signal Processing Letters, 2021, 28: 1848–1852. doi: 10.1109/LSP.2021.3111582
    [3] LU Yawei, MA Jiazhi, ZHOU Jian, et al. Adaptive polarization-constrained monopulse approach for dual-polarization array[J]. IEEE Antennas and Wireless Propagation Letters, 2021, 20(3): 289–292. doi: 10.1109/LAWP.2020.3047684
    [4] LU Yawei, MA Jiazhi, SHI Longfei, et al. Multiple interferences suppression with space-polarization null-decoupling for polarimetrie array[J]. Journal of Systems Engineering and Electronics, 2021, 32(1): 44–52. doi: 10.23919/JSEE.2021.000006
    [5] YU K B. Enhanced monopulse angle estimation using 4-channel radar system[C]. Proceedings of the IET International Radar Conference 2015, Hangzhou, China, 2015: 1–6.
    [6] 苏保伟, 王永良, 李荣峰, 等. 阻塞矩阵方法对消主瓣干扰[J]. 系统工程与电子技术, 2005, 27(11): 1830–1832. doi: 10.3321/j.issn:1001-506X.2005.11.004

    SU Baowei, WANG Yongliang, LI Rongfeng, et al. Mainlobe interference cancelling method via block matrix[J]. Systems Engineering and Electronics, 2005, 27(11): 1830–1832. doi: 10.3321/j.issn:1001-506X.2005.11.004
    [7] 陈卓, 贾维敏, 金伟, 等. 基于EMP的主瓣干扰抑制算法分析[J]. 现代雷达, 2020, 42(4): 55–60. doi: 10.16592/j.cnki.1004-7859.2020.04.012

    CHEN Zhuo, JIA Weimin, JIN Wei, et al. Analysis of mainlobe interference suppression algorithms based on Eigen-projection matrix preprocessing[J]. Modern Radar, 2020, 42(4): 55–60. doi: 10.16592/j.cnki.1004-7859.2020.04.012
    [8] YANG Xiaopeng, ZHANG Zongao, ZENG Tao, et al. Mainlobe interference suppression based on Eigen-projection processing and covariance matrix reconstruction[J]. IEEE Antennas and Wireless Propagation Letters, 2014, 13: 1369–1372. doi: 10.1109/LAWP.2014.2339224
    [9] YANG Xiaopeng, YIN Pilei, ZENG Tao, et al. Applying auxiliary array to suppress mainlobe interference for ground-based radar[J]. IEEE Antennas and Wireless Propagation Letters, 2013, 12: 433–436. doi: 10.1109/LAWP.2013.2254698
    [10] 饶灿, 李荣锋. 主瓣干扰下多点约束自适应单脉冲测角方法[J]. 雷达科学与技术, 2011, 9(3): 232–236. doi: 10.3969/j.issn.1672-2337.2011.03.007

    RAO Can and LI Rongfeng. Multipoint constraint adaptive monopulse estimation in the presence of mainlobe jamming[J]. Radar Science and Technology, 2011, 9(3): 232–236. doi: 10.3969/j.issn.1672-2337.2011.03.007
    [11] CHENG Ziyang, HE Zishu, DUAN Xiang, et al. Adaptive monopulse approach with joint linear constraints for planar array at subarray level[J]. IEEE Transactions on Aerospace and Electronic Systems, 2018, 54(3): 1432–1441. doi: 10.1109/TAES.2018.2793318
    [12] ZHU Lin, QIU Shuang, and HAN Yubing. Combined constrained adaptive sum and difference beamforming in monopulse angle estimation[J]. IEEE Antennas and Wireless Propagation Letters, 2018, 17(12): 2314–2318. doi: 10.1109/LAWP.2018.2873818
    [13] 夏德平, 张良, 吴涛, 等. 机载双基地极化敏感阵列多干扰抑制[J]. 雷达学报, 2022, 11(3): 399–407. doi: 10.12000/JR21212

    XIA Deping, ZHANG Liang, WU Tao, et al. A multiple interference suppression algorithm based on airborne bistatic polarization radar[J]. Journal of Radars, 2022, 11(3): 399–407. doi: 10.12000/JR21212
    [14] CHEN Xinzhu, SHU Ting, YU K B, et al. Enhanced ADBF architecture for monopulse angle estimation in multiple jammings[J]. IEEE Antennas and Wireless Propagation Letters, 2017, 16: 2684–2687. doi: 10.1109/LAWP.2017.2740958
    [15] YAN Fenggang, JIN Meng, and QIAO Xiaolin. Low-complexity DOA estimation based on compressed MUSIC and its performance analysis[J]. IEEE Transactions on Signal Processing, 2013, 61(8): 1915–1930. doi: 10.1109/TSP.2013.2243442
  • 加载中
图(9) / 表(3)
计量
  • 文章访问数:  393
  • HTML全文浏览量:  266
  • PDF下载量:  99
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-12-29
  • 修回日期:  2023-04-08
  • 网络出版日期:  2023-04-26
  • 刊出日期:  2024-01-17

目录

    /

    返回文章
    返回