Improved Top-hat Transform–based Algorithm for Infrared Dim and Small Target Detection
-
摘要: 天空背景下的红外弱小目标检测技术较为成熟,但在近地复杂背景下,红外弱小目标的检测存在准确率不高、虚警目标多、实时性差的问题。针对以上问题,该文提出一种基于改进顶帽变换的红外弱小目标检测算法(OTHOLCM)。该算法采用基于改进顶帽变换的图像预处理算法(OTH),通过对不同灰度值的图像采取不同的策略针对性地处理图像,达到目标增强、背景抑制的效果。并在此基础上,采用基于改进多尺度局部对比度的红外弱小目标检测算法(OLCM),通过针对目标尺寸特点进行尺度设计,使得在保证算法实时性的基础上扩大目标尺寸检测范围。实验证明:OTHOLCM算法可以保证实时性并明显提高目标检测准确率、减少虚警目标数量。与3层模板局部差异度量算法(TTLDM)、基于边角感知的时空张量模型(ECASTT)等先进算法相比,OTHOLCM算法可使真阳性率分别提高近79%, 61%,假阳性率分别降低近77%, 73%,目标检测速度达到每秒25帧。Abstract: The technology for detecting infrared dim and small targets in the sky background is relatively mature. However, detecting these targets in near-ground complex backgrounds poses challenges such as low accuracy, high false alarm rates, and poor real-time performance. To address these problems, a novel algorithm for detecting infrared dim and small targets based on an improved top-hat transform, referred to as OTHOLCM, is proposed in this study. The algorithm uses an image preprocessing method, OTH, based on an improved top-hat transformation to enhance the target and suppress the background. Different strategies are employed to process images with different gray values. Additionally, the algorithm uses an infrared dim and small target detection technique, OLCM, based on improved multi-scale local contrast. The OLCM uses target size characteristics to expand the target detection range while ensuring real-time performance. Experimental results show that the OTHOLCM algorithm can guarantee good real-time performance, improve target detection accuracy, and reduce the number of false alarms. Compared with advanced algorithms such as the three-layer template local difference measurement algorithm and the edge and corner awareness-based spatial-temporal tensor, the OTHOLCM algorithm increases the actual positive rate by almost 79% and 61%, respectively. In addition, it reduces the false positive rate by nearly 77% and 73%, respectively. Moreover, the target detection speed reaches 25 frames per second.
-
表 1 不同系数组合下OTHOLCM算法性能的对比
实验组 学习系数组合 Precision(%) TPR(%) FPR(%) SNR 1 (0.1,0.6,0.3) 12.35 90.63 0.28 3.33 2 (0.2,0.6,0.3) 9.92 91.25 0.33 2.78 3 (0.3,0.6,0.3) 9.53 91.25 0.34 2.40 4 (0.1,0.5,0.3) 11.65 85.59 0.32 3.50 5 (0.1,0.7,0.3) 10.84 93.75 0.31 3.20 6 (0.1,0.6,0.2) 12.39 93.75 0.32 2.71 7 (0.1,0.6,0.4) 10.52 90.00 0.31 2.99 表 2 图像预处理算法性能对比结果
表 3 经典目标检测算法性能对比结果
表 4 先进算法和组合目标检测算法性能对比
指标 MLCM OLCM IDCPLCM CWBLCM OTHLCM IDCPOLCM CWBOLCM OTHOLCM 时间(s) 0.040 0.053 0.140 0.140 0.043 0.142 0.032 0.045 AUC 0.805 0.852 0.803 0.833 0.846 0.852 0.878 0.893 -
[1] 于强, 黄树彩, 赵炜, 等. 红外弱小目标检测方法综述[J]. 飞航导弹, 2014(4): 59–63,94. doi: 10.16338/j.issn.1009-1319.2014.04.020YU Qiang, HUANG Shucai, ZHAO Wei, et al. Infrared dim and small target detection: A review[J]. Aerodynamic Missile Journal, 2014(4): 59–63,94. doi: 10.16338/j.issn.1009-1319.2014.04.020 [2] 杜鹏. 复杂背景条件下红外弱小目标检测关键技术研究[D]. [博士论文], 新疆大学, 2020: 6.DU Peng. Research on key technology of infrared detection of dim and small target under complex background conditions[D]. [Ph. D. dissertation], Xinjiang University, 2020: 6. [3] HWANG H and HADDAD R A. Adaptive median filters: New algorithms and results[J]. IEEE Transactions on Image Processing, 1995, 4(4): 499–502. doi: 10.1109/83.370679 [4] BOVIK A C. Introduction to digital image and video processing[M]. BOVIK A. Handbook of Image and Video Processing. 2nd ed. Burlington: Academic Press, 2010: 102–105. [5] 樊华. 红外弱小目标检测跟踪技术研究[D]. [硕士论文], 北华航天工业学院, 2021: 10.FAN Hua. Research on infrared dim small target detection and tracking technology[D]. [Master dissertation], North China Institute of Aerospace Engineering, 2021: 10. [6] TOMASI C and MANDUCHI R. Bilateral filtering for gray and color images[C]. Proceedings of the Sixth International Conference on Computer Vision (IEEE Cat. No. 98CH36271), Bombay, India, 1998: 839–846. [7] BAI Xiangzhi and ZHOU Fugen. Analysis of new top-hat transformation and the application for infrared dim small tar-get detection[J]. Pattern Recognition, 2010, 43(6): 2145–2156. doi: 10.1016/j.patcog.2009.12.023 [8] 杨卫平, 沈振康. 红外图像序列小目标检测预处理技术[J]. 红外与激光工程, 1998, 27(1): 23–28.YANG Weiping and SHEN Zhenkang. Small target detection and preprocessing technology in infrared image sequences[J]. Infrared and Laser Engineering, 1998, 27(1): 23–28. [9] 高陈强, 张天骐, 李强, 等. 几种典型红外弱小目标检测算法的性能评估[J]. 重庆邮电大学学报(自然科学版), 2010, 22(3): 386–391.GAO Chenqiang, ZHANG Tianqi, LI Qiang, et al. Performance evaluation of several typical infrared weak and small target detection algorithms[J]. Journal of Chongqing University of Posts and Telecommunications (Natural Science Edition), 2010, 22(3): 386–391. [10] NAIR P, GAVASKAR R G, and CHAUDHURY K N. Compressive adaptive bilateral filtering[C]. Proceedings of the ICASSP 2020–2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Barcelona, Spain, 2020: 2078–2082. [11] 白相志, 周付根, 解永春, 等. 新型Top-hat变换及其在红外小目标检测中的应用[J]. 数据采集与处理, 2009, 24(5): 643–649. doi: 10.16337/j.1004-9037.2009.05.002BAI Xiangzhi, ZHOU Fugen, XIE Yongchun, et al. New top-hat transformation and application on infrared small target detection[J]. Journal of Data Acquisition and Processing, 2009, 24(5): 643–649. doi: 10.16337/j.1004-9037.2009.05.002 [12] DENG Lizhen, ZHANG Jieke, XU Guoxia, et al. Infrared small target detection via adaptive M-estimator ring top-hat transformation[J]. Pattern Recognition, 2021, 112: 107729. doi: 10.1016/j.patcog.2020.107729 [13] GAO Chenqiang, MENG Deyu, YANG Yi, et al. Infrared patch-image model for small target detection in a single image[J]. IEEE Transactions on Image Processing, 2013, 22(12): 4996–5009. doi: 10.1109/TIP.2013.2281420 [14] ZHANG Landan and PENG Zhenming. Infrared small target detection based on partial sum of the tensor nuclear norm[J]. Remote Sensing, 2019, 11(4): 382. doi: 10.3390/rs11040382 [15] CHEN C L P, LI Hong, WEI Yantao, et al. A local contrast method for small infrared target detection[J]. IEEE Transactions on Geoscience and Remote Sensing, 2014, 52(1): 574–581. doi: 10.1109/TGRS.2013.2242477 [16] 鞠默然, 罗海波, 刘广琦, 等. 采用空间注意力机制的红外弱小目标检测网络[J]. 光学 精密工程, 2021, 29(4): 843–853. doi: 10.37188/OPE.20212904.0843JU Moran, LUO Haibo, LIU Guangqi, et al. Infrared dim and small target detection network based on spatial attention mechanism[J]. Optics and Precision Engineering, 2021, 29(4): 843–853. doi: 10.37188/OPE.20212904.0843 [17] WEI Yantao, YOU Xinge, and LI Hong. Multiscale patch-based contrast measure for small infrared target detection[J]. Pattern Recognition, 2016, 58: 216–226. doi: 10.1016/j.patcog.2016.04.002 [18] HAN Jinhui, LIANG Kun, ZHOU Bo, et al. Infrared small target detection utilizing the multiscale relative local contrast measure[J]. IEEE Geoscience and Remote Sensing Letters, 2018, 15(4): 612–616. doi: 10.1109/LGRS.2018.2790909 [19] 穆靖, 李伟华, 饶俊民, 等. 采用三层模板局部差异度量的红外弱小目标检测[J]. 光学 精密工程, 2022, 30(7): 869–882. doi: 10.37188/OPE.20223007.0869MU Jing, LI Weihua, RAO Junmin, et al. Infrared small target detection using tri-layer template local difference measure[J]. Optics and Precision Engineering, 2022, 30(7): 869–882. doi: 10.37188/OPE.20223007.0869 [20] 邓剑鑫. 红外弱小目标检测方法研究[D]. [硕士论文], 哈尔滨理工大学, 2021: 13–17.DENG Jianxin. Research on infrared weak and small target detection method[D]. [Master dissertation], Harbin University of Science and Technology, 2021: 13–17. [21] 回丙伟, 宋志勇, 范红旗, 等. 地/空背景下红外图像弱小飞机目标检测跟踪数据集[EB/OL]. 中国科学数据. https://doi.org/10.11922/sciencedb.902,2020, 2019.HUI Bingwei, SONG Zhiyong, FAN Hongqi, et al. A dataset for infrared image dim-small aircraft target detection and tracking under ground / air background[EB/OL]. Science Data Bank. https://doi.org/10.11922/sciencedb.902,2020, 2019. [22] 王亚平, 周裕丰, 张宝华. 基于去雾增强和张量恢复的红外小目标检测[J]. 红外与激光工程, 2022, 51(4): 20210417. doi: 10.3788/IRLA20210417WANG Yaping, ZHOU Yufeng, and ZHANG Baohua. Infrared small target detection based on Dehazing enhancement and tensor recovery[J]. Infrared and Laser Engineering, 2022, 51(4): 20210417. doi: 10.3788/IRLA20210417 [23] 李斌. 基于图像增强的红外小目标检测技术研究与系统开发[D]. [硕士论文], 新疆大学, 2021: 17–21.LI Bin. Research and system development of infrared small target detection technology based on image enhancement[D]. [Master dissertation], Xinjiang University, 2021: 17–21. [24] ZHANG Ping, ZHANG Lingyi, WANG Xiaoyang, et al. Edge and corner awareness-based spatial–temporal tensor model for infrared small-target detection[J]. IEEE Transactions on Geoscience and Remote Sensing, 2021, 59(12): 10708–10724. doi: 10.1109/TGRS.2020.3037938