高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

面向6G通信感知一体化的40~50 GHz毫米波信道反射和透射特性研究

王洋 刘越洋 廖希 周继华 宋浩正 任明浩 陈前斌

王洋, 刘越洋, 廖希, 周继华, 宋浩正, 任明浩, 陈前斌. 面向6G通信感知一体化的40~50 GHz毫米波信道反射和透射特性研究[J]. 电子与信息学报, 2024, 46(1): 146-154. doi: 10.11999/JEIT221560
引用本文: 王洋, 刘越洋, 廖希, 周继华, 宋浩正, 任明浩, 陈前斌. 面向6G通信感知一体化的40~50 GHz毫米波信道反射和透射特性研究[J]. 电子与信息学报, 2024, 46(1): 146-154. doi: 10.11999/JEIT221560
WANG Yang, LIU Yueyang, LIAO Xi, ZHOU Jihua, SONG Haozheng, REN Minghao, CHEN Qianbin. Research on Reflection and Transmission Characteristics of the Millimeter Wave Channel at 40~50 GHz for 6G ISAC[J]. Journal of Electronics & Information Technology, 2024, 46(1): 146-154. doi: 10.11999/JEIT221560
Citation: WANG Yang, LIU Yueyang, LIAO Xi, ZHOU Jihua, SONG Haozheng, REN Minghao, CHEN Qianbin. Research on Reflection and Transmission Characteristics of the Millimeter Wave Channel at 40~50 GHz for 6G ISAC[J]. Journal of Electronics & Information Technology, 2024, 46(1): 146-154. doi: 10.11999/JEIT221560

面向6G通信感知一体化的40~50 GHz毫米波信道反射和透射特性研究

doi: 10.11999/JEIT221560
基金项目: 国家自然科学基金(62271095, 62171071),重庆市自然科学基金(cstc2021jcyj-msxmX0634),重庆市自然科学基金创新发展联合基金重点项目(CSTB2022NSCQ-LZX0073)
详细信息
    作者简介:

    王洋:男,博士,教授,研究方向为毫米波太赫兹信道测量与建模、涡旋电磁波、智能反射面等

    刘越洋:男,硕士生,研究方向为太赫兹信道测量与建模

    廖希:女,博士,副教授,研究方向为毫米波太赫兹信道测量与建模、涡旋电磁波通信、通信感知一体化信道建模等

    周继华:男,博士,研究员,研究方向为复杂环境高可靠通信、通信网络、TSN等

    宋浩正:男,硕士生,研究方向为太赫兹信道测量与建模

    任明浩:男,硕士,研究方向为毫米波信道测量与建模

    陈前斌:男,博士,教授,研究方向为5G/6G通信、智能网络、人工智能等

    通讯作者:

    廖希 liaoxi@cqupt.edu.cn

  • 中图分类号: TN929.5

Research on Reflection and Transmission Characteristics of the Millimeter Wave Channel at 40~50 GHz for 6G ISAC

Funds: The National Natural Science Foundation of China (62271095, 62171071), The Natural Science Foundation of Chongqing (cstc2021jcyjmsxmX0634), The Natural Science Foundation Innovation and Development Joint Fund Project of Chongqing (CSTB2022NSCQ-LZX0073)
  • 摘要: 为解决毫米波信道反射和透射特性测量数据不足、多层材料传播系数计算不准确和传播特性表征不明的问题,该文开展面向6G通信感知一体化(ISAC)的40~50 GHz毫米波信道反射和透射特性研究。首先,基于菲涅尔理论和射线弹跳追踪原理,提出一种室内多层建筑材料传播系数计算方法;然后,利用基于矢量网络分析仪的毫米波信道测量平台,开展40~50 GHz频率范围内多层木板和多层玻璃的反射和透射系数测量活动。结果表明,该方法与测量值间高度吻合,传播系数误差低于0.1,能够准确地刻画毫米波信道反射和透射特性变化规律。此外,研究还发现反射系数谐振特性和有效布儒斯特角特性依赖于电波极化、入射角和材料厚度。
  • 图  1  基于射线场追踪的反射和透射传播示意图

    图  2  多层材料内部的多次反射和多次透射传播机理

    图  3  被测材料实物图

    图  4  材料测量示意图及天线方向图

    图  5  3种被测材料在不同入射角下的反射系数和透射系数

    图  6  多层材料TE极化反射系数的谐振特性

    图  7  TM波反射系数布儒斯特角特性

    表  1  测量参数设置

    测量参数取值测量参数取值
    中心频率(GHz)45天线类型喇叭天线
    频率带宽(GHz)10极化类型水平/垂直
    扫频点数1001天线高度(cm)60
    频点间隔(MHz)10发射功率(dBm)0
    中频带宽(kHz)2测量半径(cm)50
    下载: 导出CSV

    表  2  多层材料几何参数和电磁参数

    被测材料几何参数电磁参数
    长度(cm)宽度(cm)粗糙度(μm)总厚度(mm)各层厚度(mm)${\varepsilon _r}$$\sigma $ (S/m)
    3层木板76.842.00.34913.58第1层:2.522.170.60
    第2层:8.542.060.20
    第3层:2.522.170.60
    3层玻璃160.060.00.19215.33第1层:4.406.340.14
    第2层:6.531.000
    第3层:4.406.340.14
    3层玻璃260.060.00.19220.41第1层:4.406.340.14
    第2层:11.611.000
    第3层:4.406.340.14
    下载: 导出CSV

    表  3  TE极化不同入射角下传播系数波动区间与拟合误差

    被测
    材料
    入射角
    (°)
    传播系数波动区间误差PCE
    ΓmeaTmeaSmea
    3层
    木板
    150.22-0.320.74-0.750.60-0.620.0480
    300.28-0.360.67-0.680.68-0.710.0559
    450.34-0.400.56-0.590.71-0.730.0675
    600.42-0.550.43-0.510.72-0.750.0768
    750.56-0.630.34-0.390.70-0.760.0801
    3层
    玻璃1
    150.22-0.750.50-0.720.40-0.660.0247
    300.24-0.850.39-0.700.39-0.750.0285
    450.20-0.900.37-0.520.36-0.800.0328
    600.35-0.910.05-0.480.24-0.840.0641
    750.39-0.970.02-0.650.29-0.650.0594
    3层
    玻璃2
    150.17-0.830.48-0.750.26-0.670.0480
    300.21-0.900.38-0.680.35-0.740.0559
    450.21-0.910.37-0.520.25-0.830.0675
    600.39-0.910.08-0.590.31-0.910.0768
    750.31-0.980.02-0.280.26-0.920.0801
    下载: 导出CSV

    表  4  毫米波信道反射系数的谐振周期

    被测材料谐振频率
    间隔 (GHz)
    入射角(°)
    1530456075
    3层木板测量值4.474.564.865.215.94
    理论值4.454.514.805.155.83
    3层玻璃1测量值5.626.077.096.38>10
    理论值5.606.047.026.30>10
    3层玻璃2测量值4.064.174.305.24>10
    理论值4.034.104.205.13>10
    下载: 导出CSV
  • [1] IMT-2030(6G)推进组. 6G总体愿景与潜在关键技术白皮书[R]. 2021.

    IMT-2030 (6G) Promotion Group. White paper on 6G Vision and Candidate Technologies[R]. 2021.
    [2] WANG Jian, VARSHNEY N, GENTILE C, et al. Integrated sensing and communication: Enabling techniques, applications, tools and data sets, standardization, and future directions[J]. IEEE Internet of Things Journal, 2022, 9(23): 23416–23440. doi: 10.1109/JIOT.2022.3190845
    [3] LIU Fan, CUI Yuanhao, MASOUROS C, et al. Integrated sensing and communications: Toward dual-functional wireless networks for 6G and beyond[J]. IEEE Journal on Selected Areas in Communications, 2022, 40(6): 1728–1767. doi: 10.1109/JSAC.2022.3156632
    [4] WANG Xiong, KONG Linghe, KONG Fanxin, et al. Millimeter wave communication: A comprehensive survey[J]. IEEE Communications Surveys & Tutorials, 2018, 20(3): 1616–1653. doi: 10.1109/COMST.2018.2844322
    [5] HONG Wei, JIANG Zhihao, YU Chao, et al. The role of millimeter-wave technologies in 5G/6G wireless communications[J]. IEEE Journal of Microwaves, 2021, 1(1): 101–122. doi: 10.1109/JMW.2020.3035541
    [6] CHANG Bo, TANG Wei, YAN Xiaoyu, et al. Integrated scheduling of sensing, communication, and control for mmWave/THz communications in cellular connected UAV networks[J]. IEEE Journal on Selected Areas in Communications, 2022, 40(7): 2103–2113. doi: 10.1109/JSAC.2022.3157366
    [7] EL FAITORI S and SALOUS S. Reflection and penetration loss wideband measurements of building materials at 28 GHz and 39 GHz[C]. The 2022 16th European Conference on Antennas and Propagation, Madrid, Spain, 2022: 1–4.
    [8] YANG Wenfei, HUANG Jie, ZHANG Jiliang, et al. Measurements of reflection and penetration loss in indoor environments in the 39-GHz band[C]. The 2021 15th European Conference on Antennas and Propagation, Dusseldorf, Germany, 2021: 1–5.
    [9] XING Yunchou, KANHERE O, JU Shihao, et al. Indoor wireless channel properties at millimeter wave and sub-terahertz frequencies[C]. 2019 IEEE Global Communications Conference, Waikoloa, USA, 2019: 1–6.
    [10] LUO Jiangui, SHAO Yu, LIAO Xi, et al. Complex permittivity estimation for cloths based on QPSO method over (40 to 50) GHz[J]. IEEE Transactions on Antennas and Propagation, 2021, 69(1): 600–605. doi: 10.1109/TAP.2020.3005032
    [11] ITU. Recommendation ITU-R P. 2040-1 Effects of building materials and structures on radiowave propagation above about 100 MHz[S]. 2015.
    [12] TEH C H, CHUNG B K, and LIM E H. Multilayer wall correction factors for indoor ray-tracing radio propagation modeling[J]. IEEE Transactions on Antennas and Propagation, 2020, 68(1): 604–608. doi: 10.1109/TAP.2019.2943397
    [13] BALASUBRAMANIAN M, CAMPBELL S D, WERNER P L, et al. Geometrical optics solution for periodic multilayer anisotropic slab scattering[C]. The 2020 Fourteenth International Congress on Artificial Materials for Novel Wave Phenomena, New York, USA, 2020: 130–132.
    [14] BORN M and WOLF E. Principles of Optics[M]. 7th expanded ed. Cambridge: Cambridge University Press, 1999.
    [15] SHEIKH F, GAO Yuan, and KAISER T. A study of diffuse scattering in massive MIMO channels at terahertz frequencies[J]. IEEE Transactions on Antennas and Propagation, 2020, 68(2): 997–1008. doi: 10.1109/TAP.2019.2944536
    [16] 罗健桂. 典型建筑材料在毫米波频段下的电磁特性研究[D]. [硕士论文], 重庆邮电大学, 2020.

    LUO Jiangui. Electromagnetic property of typical building materials at millimeter-wave band[D]. [Master dissertation], Chongqing University of Posts and Telecommunications, 2020.
    [17] DEGLI-ESPOSTI V, ZOLI M, VITUCCI E M, et al. A method for the electromagnetic characterization of construction materials based on Fabry–Pérot resonance[J]. IEEE Access, 2017, 5: 24938–24943. doi: 10.1109/ACCESS.2017.2767278
  • 加载中
图(7) / 表(4)
计量
  • 文章访问数:  215
  • HTML全文浏览量:  93
  • PDF下载量:  66
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-12-19
  • 修回日期:  2023-06-11
  • 网络出版日期:  2023-06-19
  • 刊出日期:  2024-01-17

目录

    /

    返回文章
    返回