[1] |
张晓茜, 徐勇军. 面向零功耗物联网的反向散射通信综述[J]. 通信学报, 2022, 43(11): 199–212. doi: 10.11959/j.issn.1000-436x.2022199ZHANG Xiaoxi and XU Yongjun. Survey on backscatter communication for zero-power IoT[J]. Journal on Communications, 2022, 43(11): 199–212. doi: 10.11959/j.issn.1000-436x.2022199
|
[2] |
XING Chengwen, JING Yindi, WANG Shuai, et al. New viewpoint and algorithms for water-filling solutions in wireless communications[J]. IEEE Transactions on Signal Processing, 2020, 68: 1618–1634. doi: 10.1109/TSP.2020.2973488
|
[3] |
CAO Yinwen, YU Song, SHEN Jing, et al. Frequency estimation for optical coherent MPSK system without removing modulated data phase[J]. IEEE Photonics Technology Letters, 2010, 22(10): 691–693. doi: 10.1109/LPT.2010.2044170
|
[4] |
LEVEN A, KANEDA N, KOC U V, et al. Frequency estimation in intradyne reception[J]. IEEE Photonics Technology Letters, 2007, 19(6): 366–368. doi: 10.1109/LPT.2007.891893
|
[5] |
FATADIN I and SAVORY S J. Compensation of frequency offset for 16-QAM optical coherent systems using QPSK partitioning[J]. IEEE Photonics Technology Letters, 2011, 23(17): 1246–1248. doi: 10.1109/LPT.2011.2158994
|
[6] |
HUANG Dezhao, CHENG T H, and YU Changyuan. Accurate two-stage frequency offset estimation for coherent optical systems[J]. IEEE Photonics Technology Letters, 2013, 25(2): 179–182. doi: 10.1109/LPT.2012.2232288
|
[7] |
YANG Tao, SHI Chen, CHEN Xue, et al. Hardware-efficient multi-format frequency offset estimation for M-QAM coherent optical receivers[J]. IEEE Photonics Technology Letters, 2018, 30(18): 1605–1608. doi: 10.1109/LPT.2018.2863739
|
[8] |
KIM J W, LEE Y S, JIN M Y, et al. Carrier frequency offset estimation for OFDM system with large oscillator phase noise[C]. 2021 International Conference on Information and Communication Technology Convergence (ICTC), Jeju Island, Korea, 2021: 368–370.
|
[9] |
ZHENG Shuai, CHEN Jian, KUO Yonghong, et al. Statistical histogram-based blind frequency offset estimation for MPSK and MQAM signal[C]. 2022 International Conference on Machine Learning and Knowledge Engineering (MLKE), Guilin, China, 2022: 125–129.
|
[10] |
JAYAPRAKASH A and REDDY G R. Covariance-fitting-based blind carrier frequency offset estimation method for OFDM systems[J]. IEEE Transactions on Vehicular Technology, 2016, 65(12): 10101–10105. doi: 10.1109/TVT.2016.2542181
|
[11] |
PAGE E S. A test for a change in a parameter occurring at an unknown point[J]. Biometrika, 1955, 42(3/4): 523–527. doi: 10.2307/2333401
|
[12] |
KESHAVARZ H, SCOTT C, and NGUYEN X. Optimal change point detection in Gaussian processes[J]. Journal of Statistical Planning and Inference, 2018, 193: 151–178. doi: 10.1016/j.jspi.2017.09.003
|
[13] |
KO S I M, CHONG TT L, and GHOSH P. Dirichlet process hidden Markov multiple change-point model[J]. Bayesian Analysis, 2015, 10(2): 275–296. doi: 10.1214/14-BA910
|
[14] |
KOKOSZKA P and LEIPUS R. Change-point in the mean of dependent observations[J]. Statistics & Probability Letters, 1998, 40(4): 385–393. doi: 10.1016/S0167-7152(98)00145-X
|
[15] |
NA O, LEE Y, and LEE S. Monitoring parameter change in time series models[J]. Statistical Methods & Applications, 2011, 20(2): 171–199. doi: 10.1007/s10260-011-0162-3
|
[16] |
LING Jin, LI Xiaoqin, YANG Wenzhi, et al. The CUSUM statistic of change point under NA sequences[J]. Applied Mathematics-A Journal of Chinese Universities, 2021, 36(4): 512–520. doi: 10.1007/s11766-021-4015-z
|
[17] |
YU Yuncai and CHEN Zhicheng. Strong convergence rates of multiple change-point estimator for ρ-mixing sequence[J]. Communications in Statistics - Theory and Methods, 2023, 52(13): 4605–4621. doi: 10.1080/03610926.2021.1998532
|
[18] |
KIM K, PARK J H, LEE M, et al. Unsupervised change point detection and trend prediction for financial time-series using a new CUSUM-based approach[J]. IEEE Access, 2022, 10: 34690–34705. doi: 10.1109/ACCESS.2022.3162399
|