高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

无源反向散射通信系统载波频偏位置快速检测算法

王公仆 许亚婷 许荣涛 陈霞 艾渤

王公仆, 许亚婷, 许荣涛, 陈霞, 艾渤. 无源反向散射通信系统载波频偏位置快速检测算法[J]. 电子与信息学报, 2023, 45(7): 2311-2316. doi: 10.11999/JEIT221558
引用本文: 王公仆, 许亚婷, 许荣涛, 陈霞, 艾渤. 无源反向散射通信系统载波频偏位置快速检测算法[J]. 电子与信息学报, 2023, 45(7): 2311-2316. doi: 10.11999/JEIT221558
WANG Gongpu, XU Yating, XU Rongtao, CHEN Xia, AI Bo. A Fast Carrier Frequency Offset Position Detection Algorithm for Passive Backscatter Communication System[J]. Journal of Electronics & Information Technology, 2023, 45(7): 2311-2316. doi: 10.11999/JEIT221558
Citation: WANG Gongpu, XU Yating, XU Rongtao, CHEN Xia, AI Bo. A Fast Carrier Frequency Offset Position Detection Algorithm for Passive Backscatter Communication System[J]. Journal of Electronics & Information Technology, 2023, 45(7): 2311-2316. doi: 10.11999/JEIT221558

无源反向散射通信系统载波频偏位置快速检测算法

doi: 10.11999/JEIT221558
基金项目: 国家重点研发计划(2021YFB3901302)
详细信息
    作者简介:

    王公仆:男,教授、博士生导师,研究方向为无线信号处理与移动互联网

    许亚婷:女,硕士生,研究方向为移动与互联网络

    许荣涛:男,副教授,研究方向为5G/6G物理层关键技术

    陈霞:女,副教授,研究方向为通信信号处理

    艾渤:男,教授,研究方向为无线通信

    通讯作者:

    许亚婷 22120448@bjtu.edu.cn

  • 中图分类号: TN929.5

A Fast Carrier Frequency Offset Position Detection Algorithm for Passive Backscatter Communication System

Funds: The National Key R&D Program of China (2021YFB3901302)
  • 摘要: 近来无源反向散射通信技术作为绿色物联网的关键技术,引起了广泛的关注。在无源反向散射通信系统中,收发节点与反射节点的振荡器差异、相对运动以及环境变化,导致接收端和发送端存在载波频率偏移(CFO)。CFO对信号检测和系统性能有重要影响,而当前多数无源反向散射通信系统研究忽略了CFO。该文设计了一种适用于频移键控调制(FSK)的CFO快速检测方法,不需要导频就能快速有效检测出CFO是否存在并找出存在的位置。首先,根据信号在CFO存在与否的不同,采用去直流后取模方法对信号进行处理,而后根据处理后的信号的特点,基于累积和(CUSUM)设计快速检测算法对载波频偏出现的位置进行检测,并对理论分析结果进行仿真验证,仿真结果表明取模检测可以有效检测出CFO出现的位置。
  • 图  1  反向散射通信系统模型

    图  2  待检测的信号$ y\left(t\right) $

    图  3  CFO=5 Hz时,载波频偏位置检测图

    图  4  CFO-检测位置曲线图

    图  5  载波频偏位置检测理论值与仿真值对比图

  • [1] 张晓茜, 徐勇军. 面向零功耗物联网的反向散射通信综述[J]. 通信学报, 2022, 43(11): 199–212. doi: 10.11959/j.issn.1000-436x.2022199

    ZHANG Xiaoxi and XU Yongjun. Survey on backscatter communication for zero-power IoT[J]. Journal on Communications, 2022, 43(11): 199–212. doi: 10.11959/j.issn.1000-436x.2022199
    [2] XING Chengwen, JING Yindi, WANG Shuai, et al. New viewpoint and algorithms for water-filling solutions in wireless communications[J]. IEEE Transactions on Signal Processing, 2020, 68: 1618–1634. doi: 10.1109/TSP.2020.2973488
    [3] CAO Yinwen, YU Song, SHEN Jing, et al. Frequency estimation for optical coherent MPSK system without removing modulated data phase[J]. IEEE Photonics Technology Letters, 2010, 22(10): 691–693. doi: 10.1109/LPT.2010.2044170
    [4] LEVEN A, KANEDA N, KOC U V, et al. Frequency estimation in intradyne reception[J]. IEEE Photonics Technology Letters, 2007, 19(6): 366–368. doi: 10.1109/LPT.2007.891893
    [5] FATADIN I and SAVORY S J. Compensation of frequency offset for 16-QAM optical coherent systems using QPSK partitioning[J]. IEEE Photonics Technology Letters, 2011, 23(17): 1246–1248. doi: 10.1109/LPT.2011.2158994
    [6] HUANG Dezhao, CHENG T H, and YU Changyuan. Accurate two-stage frequency offset estimation for coherent optical systems[J]. IEEE Photonics Technology Letters, 2013, 25(2): 179–182. doi: 10.1109/LPT.2012.2232288
    [7] YANG Tao, SHI Chen, CHEN Xue, et al. Hardware-efficient multi-format frequency offset estimation for M-QAM coherent optical receivers[J]. IEEE Photonics Technology Letters, 2018, 30(18): 1605–1608. doi: 10.1109/LPT.2018.2863739
    [8] KIM J W, LEE Y S, JIN M Y, et al. Carrier frequency offset estimation for OFDM system with large oscillator phase noise[C]. 2021 International Conference on Information and Communication Technology Convergence (ICTC), Jeju Island, Korea, 2021: 368–370.
    [9] ZHENG Shuai, CHEN Jian, KUO Yonghong, et al. Statistical histogram-based blind frequency offset estimation for MPSK and MQAM signal[C]. 2022 International Conference on Machine Learning and Knowledge Engineering (MLKE), Guilin, China, 2022: 125–129.
    [10] JAYAPRAKASH A and REDDY G R. Covariance-fitting-based blind carrier frequency offset estimation method for OFDM systems[J]. IEEE Transactions on Vehicular Technology, 2016, 65(12): 10101–10105. doi: 10.1109/TVT.2016.2542181
    [11] PAGE E S. A test for a change in a parameter occurring at an unknown point[J]. Biometrika, 1955, 42(3/4): 523–527. doi: 10.2307/2333401
    [12] KESHAVARZ H, SCOTT C, and NGUYEN X. Optimal change point detection in Gaussian processes[J]. Journal of Statistical Planning and Inference, 2018, 193: 151–178. doi: 10.1016/j.jspi.2017.09.003
    [13] KO S I M, CHONG TT L, and GHOSH P. Dirichlet process hidden Markov multiple change-point model[J]. Bayesian Analysis, 2015, 10(2): 275–296. doi: 10.1214/14-BA910
    [14] KOKOSZKA P and LEIPUS R. Change-point in the mean of dependent observations[J]. Statistics & Probability Letters, 1998, 40(4): 385–393. doi: 10.1016/S0167-7152(98)00145-X
    [15] NA O, LEE Y, and LEE S. Monitoring parameter change in time series models[J]. Statistical Methods & Applications, 2011, 20(2): 171–199. doi: 10.1007/s10260-011-0162-3
    [16] LING Jin, LI Xiaoqin, YANG Wenzhi, et al. The CUSUM statistic of change point under NA sequences[J]. Applied Mathematics-A Journal of Chinese Universities, 2021, 36(4): 512–520. doi: 10.1007/s11766-021-4015-z
    [17] YU Yuncai and CHEN Zhicheng. Strong convergence rates of multiple change-point estimator for ρ-mixing sequence[J]. Communications in Statistics - Theory and Methods, 2023, 52(13): 4605–4621. doi: 10.1080/03610926.2021.1998532
    [18] KIM K, PARK J H, LEE M, et al. Unsupervised change point detection and trend prediction for financial time-series using a new CUSUM-based approach[J]. IEEE Access, 2022, 10: 34690–34705. doi: 10.1109/ACCESS.2022.3162399
  • 加载中
图(5)
计量
  • 文章访问数:  616
  • HTML全文浏览量:  180
  • PDF下载量:  153
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-12-19
  • 修回日期:  2023-06-08
  • 网络出版日期:  2023-06-14
  • 刊出日期:  2023-07-10

目录

    /

    返回文章
    返回