高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

环境反向散射蜂窝网络下行链路级联干扰对齐算法

李世宝 王晓莉 孙明玉 李佺玉 崔学荣 刘建航

李世宝, 王晓莉, 孙明玉, 李佺玉, 崔学荣, 刘建航. 环境反向散射蜂窝网络下行链路级联干扰对齐算法[J]. 电子与信息学报, 2023, 45(7): 2342-2349. doi: 10.11999/JEIT221534
引用本文: 李世宝, 王晓莉, 孙明玉, 李佺玉, 崔学荣, 刘建航. 环境反向散射蜂窝网络下行链路级联干扰对齐算法[J]. 电子与信息学报, 2023, 45(7): 2342-2349. doi: 10.11999/JEIT221534
LI Shibao, WANG Xiaoli, SUN Mingyu, LI Quanyu, CUI Xuerong, LIU Jianhang. Cascade Interference Alignment Algorithm for Ambient Backscatter Cellular Networks Downlink[J]. Journal of Electronics & Information Technology, 2023, 45(7): 2342-2349. doi: 10.11999/JEIT221534
Citation: LI Shibao, WANG Xiaoli, SUN Mingyu, LI Quanyu, CUI Xuerong, LIU Jianhang. Cascade Interference Alignment Algorithm for Ambient Backscatter Cellular Networks Downlink[J]. Journal of Electronics & Information Technology, 2023, 45(7): 2342-2349. doi: 10.11999/JEIT221534

环境反向散射蜂窝网络下行链路级联干扰对齐算法

doi: 10.11999/JEIT221534
基金项目: 国家自然科学基金 (61972417,61902431),山东省自然科学基金(ZR2020MF005)
详细信息
    作者简介:

    李世宝:男,教授,研究方向为移动计算、无线传感器网络、干扰对齐等

    王晓莉:女,硕士生,研究方向为无线通信、干扰对齐等

    孙明玉:女,硕士生,研究方向为无线通信、干扰对齐

    李佺玉:女,硕士生,研究方向为无线通信、非正交多址接入等

    崔学荣:男,教授,研究方向为水下通信、探测和导航、大数据与人工智能、无线定位等

    刘建航:男,副教授,研究方向为网络安全、智能传输、车载网络、无线网络等

    通讯作者:

    李世宝 lishibao@upc.edu.cn

  • 中图分类号: TN929.53

Cascade Interference Alignment Algorithm for Ambient Backscatter Cellular Networks Downlink

Funds: The National Natural Science Foundation of China (61972417, 61902431), The Natural Science Foundation of Shandong Province (ZR2020MF005)
  • 摘要: 环境反向散射蜂窝网络能同时支持蜂窝网通信和环境反向散射通信,具有良好的应用前景,但环境反向散射的信号与蜂窝网络信号之间存在严重的互相干扰。针对这一问题,该文提出环境反向散射蜂窝网络的级联干扰对齐(CIA)算法。为了分别对齐基站信号对阅读器和用户的干扰,设计两层级联的预编码矩阵。充分考虑到反向散射节点计算能力弱,无法自主进行预编码矩阵设计的限制,结合基站到反向散射节点的信道状态信息对反向散射信号进行了预编码。并设计了对应用户的两层级联干扰抑制矩阵和阅读器的3层级联干扰抑制矩阵,将不同来源的干扰分层消除。仿真结果表明,所提算法能够消除环境反向散射蜂窝网络中的复杂干扰,保证蜂窝网络信号和反向散射信号正常传输,提高了系统和速率。
  • 图  1  环境反向散射蜂窝网络下行链路模型

    图  2  CIA算法的和速率曲线

    图  3  天线数不足以对齐用户干扰的速率曲线

    图  4  选择不同期望环境信号源的系统和速率对比曲线

  • [1] STOCKMAN H. Communication by means of reflected power[J]. Proceedings of the IRE, 1948, 36(10): 1196–1204. doi: 10.1109/JRPROC.1948.226245
    [2] BLETSAS A, SIACHALOU S, and SAHALOS J N. Anti-collision tags for backscatter sensor networks[C]. The 38th European Microwave Conference, Amsterdam, Netherlands: IEEE, 2008: 179–182.
    [3] KIMIONIS J, BLETSAS A, and SAHALOS J N. Bistatic backscatter radio for power-limited sensor networks[C]. 2013 IEEE Global Communications Conference, Atlanta, USA: IEEE, 2013: 353–358.
    [4] LIU V, PARKS A, TALLA V, et al. Ambient backscatter: Wireless communication out of thin air[J]. ACM SIGCOMM Computer Communication Review, 2013, 43(4): 39–50. doi: 10.1145/2534169.2486015
    [5] BHARADIA D, JOSHI K R, KOTARU M, et al. BackFi: High throughput WiFi backscatter[J]. ACM SIGCOMM Computer Communication Review, 2015, 45(4): 283–296. doi: 10.1145/2829988.2787490
    [6] ZHANG Pengyu, BHARADIA D, JOSHI K, et al. HitchHike: Practical backscatter using commodity WiFi[C]. The 14th ACM Conference on Embedded Network Sensor Systems CD-ROM, Stanford, USA, 2016: 259–271.
    [7] ZHENG Guangyuan, WEN Miaowen, CHEN Yingyang, et al. Interference exploitation for ambient backscatter communication networks via symbol level precoding[J]. IEEE Wireless Communications Letters, 2022, 11(6): 1166–1170. doi: 10.1109/LWC.2022.3159777
    [8] GUO Wenbo, ZHAO Hongzhi, SONG Changqing, et al. Direct-link interference cancellation design for backscatter communications over ambient DVB signals[J]. IEEE Transactions on Broadcasting, 2022, 68(2): 317–330. doi: 10.1109/TBC.2022.3142962
    [9] BISWAS R, SHEIKH M U, YIĞITLER H, et al. Direct path interference suppression requirements for bistatic backscatter communication system[C]. 2021 IEEE 93rd Vehicular Technology Conference, Helsinki, Finland, 2021: 1–5.
    [10] CHI Zicheng, LIU Xin, WANG Wei, et al. Leveraging ambient LTE traffic for ubiquitous passive communication[C/OL]. The Annual Conference of the ACM Special Interest Group on Data Communication on the Applications, Technologies, Architectures, and Protocols for Computer Communication, 2020: 172–185.
    [11] GU Bowen, LI Dong, XU Yongjun, et al. Many a little makes a mickle: Probing backscattering energy recycling for backscatter communications[J]. IEEE Transactions on Vehicular Technology, 2023, 72(1): 1343–1348. doi: 10.1109/TVT.2022.3205888
    [12] ROSENTHAL J D and REYNOLDS M S. Hardware-efficient all-digital architectures for OFDM backscatter modulators[J]. IEEE Transactions on Microwave Theory and Techniques, 2021, 69(1): 803–811. doi: 10.1109/TMTT.2020.3038860
    [13] LONG Ruizhe, LIANG Yingchang, GUO Huayan, et al. Symbiotic radio: A new communication paradigm for passive internet of things[J]. IEEE Internet of Things Journal, 2020, 7(2): 1350–1363. doi: 10.1109/JIOT.2019.2954678
    [14] YE Yinghui, SHI Liqin, CHU Xiaoli, et al. Mutualistic cooperative ambient backscatter communications under hardware impairments[J]. IEEE Transactions on Communications, 2022, 70(11): 7656–7668. doi: 10.1109/TCOMM.2022.3201119
    [15] ZHANG Qianqian, ZHANG Lin, LIANG Yingchang, et al. Backscatter-NOMA: A symbiotic system of cellular and internet-of-things networks[J]. IEEE Access, 2019, 7: 20000–20013. doi: 10.1109/ACCESS.2019.2897822
    [16] JAFAR S A and SHAMAI S. Degrees of freedom region of the MIMO X channel[J]. IEEE Transactions on Information Theory, 2008, 54(1): 151–170. doi: 10.1109/TIT.2007.911262
    [17] SUH C and TSE D. Interference alignment for cellular networks[C]. The 46th Annual Allerton Conference on Communication, Control, and Computing, Monticello, USA, 2008: 1037–1044.
    [18] MUNGARA R K, TÖLLI A, and JUNTTI M. Degrees of freedom and interference mitigation for MIMO interfering broadcast channels[C]. 2011 IEEE GLOBECOM Workshops, Houston, USA, 2011: 441–446.
    [19] LI Jingfu, FENG Wenjiang, YU F R, et al. Two new kinds of interference alignment schemes for cellular K-user MIMO downlink networks[J]. IEEE Transactions on Vehicular Technology, 2021, 70(11): 11827–11842. doi: 10.1109/TVT.2021.3115806
    [20] SUO Long, LI Hongyan, ZHANG Shun, et al. Successive interference cancellation and alignment in K-user MIMO interference channels with partial unidirectional strong interference[J]. China Communications, 2022, 19(2): 118–130. doi: 10.23919/JCC.2022.02.010
    [21] LIU Guoqing, SHENG Min, WANG Xijun, et al. Interference alignment for partially connected downlink MIMO heterogeneous networks[J]. IEEE Transactions on Communications, 2015, 63(2): 551–564. doi: 10.1109/TCOMM.2015.2388450
    [22] MISHRA D and LARSSON E G. Multi-tag backscattering to MIMO reader: Channel estimation and throughput fairness[J]. IEEE Transactions on Wireless Communications, 2019, 18(12): 5584–5599. doi: 10.1109/TWC.2019.2937763
  • 加载中
图(4)
计量
  • 文章访问数:  322
  • HTML全文浏览量:  82
  • PDF下载量:  72
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-12-12
  • 修回日期:  2023-05-30
  • 网络出版日期:  2023-06-09
  • 刊出日期:  2023-07-10

目录

    /

    返回文章
    返回