高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于时频多尺度的SSVEP信号快速识别方法

王晓甜 崔鑫语 梁硕 陈超

王晓甜, 崔鑫语, 梁硕, 陈超. 基于时频多尺度的SSVEP信号快速识别方法[J]. 电子与信息学报, 2023, 45(8): 2788-2795. doi: 10.11999/JEIT221496
引用本文: 王晓甜, 崔鑫语, 梁硕, 陈超. 基于时频多尺度的SSVEP信号快速识别方法[J]. 电子与信息学报, 2023, 45(8): 2788-2795. doi: 10.11999/JEIT221496
WANG Xiaotian, CUI Xinyu, LIANG Shuo, CHEN Chao. A Fast Recognition Method of SSVEP Signals Based on Time-Frequency Multiscale[J]. Journal of Electronics & Information Technology, 2023, 45(8): 2788-2795. doi: 10.11999/JEIT221496
Citation: WANG Xiaotian, CUI Xinyu, LIANG Shuo, CHEN Chao. A Fast Recognition Method of SSVEP Signals Based on Time-Frequency Multiscale[J]. Journal of Electronics & Information Technology, 2023, 45(8): 2788-2795. doi: 10.11999/JEIT221496

基于时频多尺度的SSVEP信号快速识别方法

doi: 10.11999/JEIT221496
基金项目: 国家自然科学基金(62293483, 61976169, 62176201),国家重点研发计划项目(2019YFA0706604, 2022YFF1202500, 2022YFF1202501)
详细信息
    作者简介:

    王晓甜:女,副教授,研究方向为人机交互、脑机接口、智能信号处理

    崔鑫语:女,硕士生,研究方向为深度学习、脑电信号处理

    梁硕:女,硕士生,研究方向为深度学习、智能信号处理

    陈超:男,教授,研究方向为模式识别、智能信息处理

    通讯作者:

    崔鑫语 21171213858@stu.xidian.edu.cn

  • 中图分类号: TN911.7

A Fast Recognition Method of SSVEP Signals Based on Time-Frequency Multiscale

Funds: The National Natural Science Foundation of China (62293483, 61976169, 62176201), The National Key Research and Development Project of China (2019YFA0706604, 2022YFF1202500, 2022YFF1202501)
  • 摘要: 目前基于稳态视觉诱发电位(SSVEP)的脑机接口在人机协作中受到广泛关注,但较短时长 SSVEP 信号仍面临信噪比较低、特征提取不充分的问题。该文从频域、时域以及空域3个角度分析并提取SSVEP信号特征。首先该方法从由频域实部信息和虚部信息整合的3维重校正特征矩阵中提取幅值和相位特征信息。然后在时域中通过训练多个刺激时窗尺度的样本增强模型表征能力。最后利用不同尺度的1维卷积核,并行提取通道空间和频域上的多尺度特征信息。该文在两种不同的视觉刺激频率和频率间隔的公开数据集上进行实验,在时窗为1 s时的平均准确率和平均信息传输率(ITR)均优于现有的其他方法。
  • 图  1  SSVEP信号采集过程

    图  2  数据集1的SSVEP刺激范式[14]

    图  3  数据集2的SSVEP刺激范式[15]

    图  4  脑电信号预处理

    图  5  特征双层重校正

    图  6  多尺度神经网络模型

    图  7  不同方法在不同时间窗长度(数据集1)上的实验结果

    图  8  不同方法在不同时间窗长度(数据集2)上的实验结果

    图  9  不同训练试次数在两个数据集上(时间窗口长度为1 s)的实验结果

    表  1  不同方法在数据集1(时间窗口长度为1 s)上的平均实验结果

    方法Acc(%)ITR(bit/min)
    TRCA19.343.44
    C_CNN88.61107.17
    PLFA_Net66.0359.41
    tCNN85.2498.82
    EEGNet87.25103.72
    SMS1D_CNN89.22108.75
    MS1D_CNN89.35109.09
    下载: 导出CSV

    表  2  不同方法在数据集2(时间窗口长度为1 s)上的平均实验结果

    方法Acc(%)ITR(bit/min)
    TRCA19.481.12
    C_CNN79.5867.86
    PLFA_Net85.4279.66
    tCNN76.6062.33
    EEGNet76.5162.16
    SMS1D_CNN87.3783.93
    MS1D_CNN90.1790.42
    下载: 导出CSV

    表  3  不同方法在数据集1(跨被试)上的平均实验结果

    方法Acc(%)ITR(bit/min)
    TRCA23.446.03
    C_CNN74.7375.81
    PLFA_Net58.5946.95
    tCNN74.4475.23
    EEGNet75.3977.14
    SMS1D_CNN76.6979.81
    MS1D_CNN77.4681.41
    下载: 导出CSV

    表  4  不同方法在数据集2(跨被试)上的平均实验结果

    方法Acc(%)ITR(bit/min)
    TRCA21.291.73
    C_CNN93.1097.76
    PLFA_Net87.9985.33
    tCNN82.4273.43
    EEGNet93.6799.28
    SMS1D_CNN94.41101.28
    MS1D_CNN96.06105.99
    下载: 导出CSV
  • [1] CHEN Xiaogang, HUANG Xiaoshan, WANG Yijun, et al. Combination of augmented reality based brain-computer interface and computer vision for high-level control of a robotic arm[J]. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2020, 28(12): 3140–3147. doi: 10.1109/TNSRE.2020.3038209
    [2] CHIUZBAIAN A, JAKOBSEN J, and PUTHUSSERYPADY S. Mind controlled drone: An innovative multiclass SSVEP based brain computer interface[C]. 2019 7th International Winter Conference on Brain-Computer Interface (BCI), Gangwon, Korea (South), 2019: 1–5.
    [3] LIN Zhonglin, ZHANG Changshui, WU Wei, et al. Frequency recognition based on canonical correlation analysis for SSVEP-based BCIs[J]. IEEE Transactions on Biomedical Engineering, 2006, 53(12): 2610–2614. doi: 10.1109/TBME.2006.886577
    [4] CHEN Xiaogang, WANG Yijun, GAO Shangkai, et al. Filter bank canonical correlation analysis for implementing a high-speed SSVEP-based brain-computer interface[J]. Journal of Neural Engineering, 2015, 12(4): 046008. doi: 10.1088/1741-2560/12/4/046008
    [5] NAKANISHI M, WANG Yijun, CHEN Xiaogang, et al. Enhancing detection of SSVEPs for a high-speed brain speller using task-related component analysis[J]. IEEE Transactions on Biomedical Engineering, 2018, 65(1): 104–112. doi: 10.1109/TBME.2017.2694818
    [6] JIAO Yong, ZHANG Yu, WANG Yu, et al. A novel multilayer correlation maximization model for improving CCA-based frequency recognition in SSVEP brain–computer interface[J]. International Journal of Neural Systems, 2018, 28(4): 1750039. doi: 10.1142/S0129065717500393
    [7] MIAO Runfeng, ZHANG Li, and SUN Qiang. Hybrid template canonical correlation analysis method for enhancing SSVEP recognition under data-limited condition[C]. 2021 10th International IEEE/EMBS Conference on Neural Engineering, Italy, 2021: 65–68.
    [8] WAYTOWICH N, LAWHERN V J, GARCIA J O, et al. Compact convolutional neural networks for classification of asynchronous steady-state visual evoked potentials[J]. Journal of Neural Engineering, 2018, 15(6): 066031. doi: 10.1088/1741-2552/aae5d8
    [9] RAVI A, BENI N H, MANUEL J, et al. Comparing user-dependent and user-independent training of CNN for SSVEP BCI[J]. Journal of Neural Engineering, 2020, 17(2): 026028. doi: 10.1088/1741-2552/ab6a67
    [10] CECOTTI H. A time-frequency convolutional neural network for the offline classification of steady-state visual evoked potential responses[J]. Pattern Recognition Letters, 2011, 32(8): 1145–1153. doi: 10.1016/j.patrec.2011.02.022
    [11] NGUYEN T H and CHUNG W Y. A single-channel SSVEP-based BCI speller using deep learning[J]. IEEE Access, 2019, 7: 1752–1763. doi: 10.1109/ACCESS.2018.2886759
    [12] KWAK N S, MÜLLER K R, and LEE S W. A convolutional neural network for steady state visual evoked potential classification under ambulatory environment[J]. PLoS One, 2017, 12(2): e0172578. doi: 10.1371/journal.pone.0172578
    [13] 林艳飞, 臧博宇, 郭嵘骁, 等. 基于相频特性的稳态视觉诱发电位深度学习分类模型[J]. 电子与信息学报, 2022, 44(2): 446–454. doi: 10.11999/JEIT210816

    LIN Yanfei, ZANG Boyu, GUO Rongxiao, et al. A deep learning method for SSVEP classification based on phase and frequency characteristics[J]. Journal of Electronics &Information Technology, 2022, 44(2): 446–454. doi: 10.11999/JEIT210816
    [14] NAKANISHI M, WANG Yujun, WANG Yute, et al. A comparison study of canonical correlation analysis based methods for detecting steady-state visual evoked potentials[J]. PLoS One, 2015, 10(10): e0140703. doi: 10.1371/journal.pone.0140703
    [15] LIU Bingchuan, HUANG Xiaoshan, WANG Yijun, et al. BETA: A large benchmark database toward SSVEP-BCI application[J]. Frontiers in Neuroscience, 2020, 14: 627. doi: 10.3389/fnins.2020.00627
    [16] PAN Yudong, CHEN Jianbo, ZHANG Yangsong, et al. An efficient CNN-LSTM network with spectral normalization and label smoothing technologies for SSVEP frequency recognition[J]. Journal of Neural Engineering, 2022, 19(5): 056014. doi: 10.1088/1741-2552/ac8dc5
    [17] JIE Hu, LI Shen, and GANG Sun. Squeeze-and-excitation networks[C]. 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, USA, 2018: 7132–7141.
    [18] DING Wenlong, SHAN Jianhua, FANG Bin, et al. Filter bank convolutional neural network for short time-window steady-state visual evoked potential classification[J]. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2021, 29: 2615–2624. doi: 10.1109/TNSRE.2021.3132162
  • 加载中
图(9) / 表(4)
计量
  • 文章访问数:  820
  • HTML全文浏览量:  411
  • PDF下载量:  116
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-12-01
  • 修回日期:  2023-05-15
  • 网络出版日期:  2023-05-22
  • 刊出日期:  2023-08-21

目录

    /

    返回文章
    返回