高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

超大规模MIMO系统中基于交叠可视区域的功率分配方法

张军 陆佳程 刘同顺 张琦 蔡曙

张军, 陆佳程, 刘同顺, 张琦, 蔡曙. 超大规模MIMO系统中基于交叠可视区域的功率分配方法[J]. 电子与信息学报, 2023, 45(12): 4262-4270. doi: 10.11999/JEIT221468
引用本文: 张军, 陆佳程, 刘同顺, 张琦, 蔡曙. 超大规模MIMO系统中基于交叠可视区域的功率分配方法[J]. 电子与信息学报, 2023, 45(12): 4262-4270. doi: 10.11999/JEIT221468
ZHANG Jun, LU Jiacheng, LIU Tongshun, ZHANG Qi, CAI Shu. Power Allocation Method Based on Overlapping Visibility Region in Extra Large Scale MIMO System[J]. Journal of Electronics & Information Technology, 2023, 45(12): 4262-4270. doi: 10.11999/JEIT221468
Citation: ZHANG Jun, LU Jiacheng, LIU Tongshun, ZHANG Qi, CAI Shu. Power Allocation Method Based on Overlapping Visibility Region in Extra Large Scale MIMO System[J]. Journal of Electronics & Information Technology, 2023, 45(12): 4262-4270. doi: 10.11999/JEIT221468

超大规模MIMO系统中基于交叠可视区域的功率分配方法

doi: 10.11999/JEIT221468
基金项目: 国家自然科学基金(62071247, 62171231, 62071249)
详细信息
    作者简介:

    张军:男,博士,教授,研究方向为超大规模MIMO、无人机通信、人工智能通信、毫米波通信、RIS辅助通信、物理层安全等

    陆佳程:男,硕士生,研究方向为超大规模MIMO、毫米波通信

    刘同顺:男,硕士,研究方向为超大规模MIMO

    张琦:女,博士,副教授,研究方向为大规模MIMO、毫米波通信、无人机通信、RIS辅助通信等

    蔡曙:男,博士,副教授,研究方向为大规模MIMO、感知通信一体化、毫米波通信等

    通讯作者:

    张军 zhangjun@njupt.edu.cn

  • 中图分类号: TN92

Power Allocation Method Based on Overlapping Visibility Region in Extra Large Scale MIMO System

Funds: The National Natural Science Foundation of China (62071247, 62171231, 62071249)
  • 摘要: 该文解决了超大规模多输入多输出(MIMO)系统中不同用户的可视区域(VR)存在相互交叠时的下行功率分配问题。考虑单个基站服务多个单天线用户的超大规模MIMO通信场景,由于基站配备的阵列较大,各个用户受障碍物遮挡仅能与基站部分天线进行通信,这部分天线即为各用户的可视区域。该文考虑不同用户的可视区域分布两两交叠,并依此划分子阵,并在各子阵上进行规则化迫零预编码以降低复杂度。接着基于大维随机矩阵理论,推导了系统下行遍历和速率的确定性近似表达式。然后,通过最大化该表达式,给出了基于统计信道状态信息的最优用户功率分配方法的闭式解。最后,仿真结果表明,和速率近似表达式的精度很高,所提功率分配方法能有效提高系统性能。
  • 图  1  超大规模MIMO系统模型图

    图  2  用户位置分布示意图

    图  3  系统遍历和速率与确定性等价式结果的对比

    图  4  不同预编码方案的性能对比

    图  5  不同功率分配方法

    图  6  VR交叠天线数与系统遍历和速率的关系

    表  1  仿真参数设置[11]

    参数天线数$ M $用户数$ K $阵列长$ L $参考损耗$ {\beta _0} $损耗因子$ \mathcal{K} $VR长度$ D $实验次数
    数值2563130 m$ {10^{ - 3.53}} $316$ {10^4} $
    下载: 导出CSV
  • [1] 尤肖虎, 尹浩, 邬贺铨. 6G与广域物联网[J]. 物联网学报, 2020, 4(1): 3–11. doi: 10.11959/j.issn.2096-3750.2020.00158

    YOU Xiaohu, YIN Hao, and WU Hequan. On 6G and wide-area IoT[J]. Chinese Journal on Internet of Things, 2020, 4(1): 3–11. doi: 10.11959/j.issn.2096-3750.2020.00158
    [2] CHEN Xiaoming, NG D W K, YU Wei, et al. Massive access for 5G and beyond[J]. IEEE Journal on Selected Areas in Communications, 2021, 39(3): 615–637. doi: 10.1109/JSAC.2020.3019724
    [3] LU Haiquan and ZENG Yong. Near-field modeling and performance analysis for multi-user extremely large-scale MIMO communication[J]. IEEE Communications Letters, 2022, 26(2): 277–281. doi: 10.1109/LCOMM.2021.3129317
    [4] IMT-2030(6G)推进组. 6G总体愿景与潜在关键技术[R]. IMT-2030(6G)推进组, 2021.
    [5] HAN Yu, JIN Shi, WEN Chaokai, et al. Localization and channel reconstruction for extra large RIS-assisted massive MIMO systems[J]. IEEE Journal of Selected Topics in Signal Processing, 2022, 16(5): 1011–1025. doi: 10.1109/JSTSP.2022.3174654
    [6] GONZÁLEZ-COMA J P, LÓPEZ-MARTÍNEZ F J, and CASTEDO L. Low-complexity distance-based scheduling for multi-user XL-MIMO systems[J]. IEEE Wireless Communications Letters, 2021, 10(11): 2407–2411. doi: 10.1109/LWC.2021.3101940
    [7] CUI Mingyao and DAI Linglong. Channel estimation for extremely large-scale MIMO: Far-field or near-field?[J]. IEEE Transactions on Communications, 2022, 70(4): 2663–2677. doi: 10.1109/TCOMM.2022.3146400
    [8] FILHO J C, BRANTE G, SOUZA R D, et al. Exploring the non-overlapping visibility regions in XL-MIMO random access and scheduling[J]. IEEE Transactions on Wireless Communications, 2022, 21(8): 6597–6610. doi: 10.1109/TWC.2022.3151329
    [9] HUANG Chongwen, ZAPPONE A, ALEXANDROPOULOS G C, et al. Reconfigurable intelligent surfaces for energy efficiency in wireless communication[J]. IEEE Transactions on Wireless Communications, 2019, 18(8): 4157–4170. doi: 10.1109/TWC.2019.2922609
    [10] LI Xueru, ZHOU Shidong, BJÖRNSON E, et al. Capacity analysis for spatially non-wide sense stationary uplink massive MIMO systems[J]. IEEE Transactions on Wireless Communications, 2015, 14(12): 7044–7056. doi: 10.1109/TWC.2015.2464219
    [11] ALI A, DE CARVALHO E, and HEATH R W. Linear receivers in non-stationary massive MIMO channels with visibility regions[J]. IEEE Wireless Communications Letters, 2019, 8(3): 885–888. doi: 10.1109/LWC.2019.2898572
    [12] MARINELLO J C, ABRÃO T, AMIRI A, et al. Antenna selection for improving energy efficiency in XL-MIMO systems[J]. IEEE Transactions on Vehicular Technology, 2020, 69(11): 13305–13318. doi: 10.1109/TVT.2020.3022708
    [13] ZHANG Jun, WEN Chaokai, JIN Shi, et al. Large system analysis of cooperative multi-cell downlink transmission via regularized channel inversion with imperfect CSIT[J]. IEEE Transactions on Wireless Communications, 2013, 12(10): 4801–4813. doi: 10.1109/TWC.2013.081413.120460
    [14] BAI Zhidong, FANG Zhaoben, and LIANG Yingchang. Spectral Theory of Large Dimensional Random Matrices and its Applications to Wireless Communications and Finance Statistics: Random Matrix Theory and its Applications[M]. Singapore: World Scientific, 2014: 11–16.
  • 加载中
图(6) / 表(1)
计量
  • 文章访问数:  392
  • HTML全文浏览量:  220
  • PDF下载量:  152
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-11-23
  • 修回日期:  2023-04-21
  • 网络出版日期:  2023-04-27
  • 刊出日期:  2023-12-26

目录

    /

    返回文章
    返回