[1] |
MESHRAM M R, AGRAWAL N K, SINHA B, et al. Characterization of M-type barium hexagonal ferrite-based wide band microwave absorber[J]. Journal of Magnetism and Magnetic Materials, 2004, 271(2/3): 207–214. doi: 10.1016/j.jmmm.2003.09.045
|
[2] |
NAM I W, CHOI J H, KIM C G, et al. Fabrication and design of electromagnetic wave absorber composed of carbon nanotube-incorporated cement composites[J]. Composite Structures, 2018, 206: 439–447. doi: 10.1016/j.compstruct.2018.07.058
|
[3] |
ENGHETA N and ZIOLKOWSKI R W. Metamaterials: Physics and Engineering Explorations[M]. Hoboken: Wiley, 2006: 1–16.
|
[4] |
HOLLOWAY C L, KUESTER E F, GORDON J A, et al. An overview of the theory and applications of metasurfaces: The two-dimensional equivalents of metamaterials[J]. IEEE Antennas and Propagation Magazine, 2012, 54(2): 10–35. doi: 10.1109/MAP.2012.6230714
|
[5] |
HE Qiong, SUN Shulin, XIAO Shiyi, et al. High-Efficiency metasurfaces: Principles, realizations, and applications[J]. Advanced Optical Materials, 2018, 6(19): 1800415. doi: 10.1002/adom.201800415
|
[6] |
FU Wenyue, HAN Yuchen, LI Jiandong, et al. Polarization insensitive wide-angle triple-band metamaterial bandpass filter[J]. Journal of Physics D:Applied Physics, 2016, 49(28): 285110. doi: 10.1088/0022-3727/49/28/285110
|
[7] |
CHEN Lei, NIE Qianfan, RUAN Ying, et al. Light-controllable metasurface for microwave wavefront manipulation[J]. Optics Express, 2020, 28(13): 18742–18749. doi: 10.1364/oe.396802
|
[8] |
王俊瑶, 樊俊鹏, 舒好, 等. 基于石墨烯超表面的效率可调太赫兹聚焦透镜[J]. 光电工程, 2021, 48(4): 200319. doi: 10.12086/oee.2021.200319WANG Junyao, FAN Junpeng, SHU Hao, et al. Efficiency-tunable terahertz focusing lens based on graphene metasurface[J]. Opto-Electronic Engineering, 2021, 48(4): 200319. doi: 10.12086/oee.2021.200319
|
[9] |
王玥, 姚震宇, 崔子健, 等. 基于超表面的超宽带线极化转换特性研究[J]. 电子与信息学报, 2022, 44(12): 4116–4124. doi: 10.11999/JEIT220447WANG Yue, YAO Zhenyu, CUI Zijian, et al. Research on ultra-wideband linear polarization conversion characteristics based on metasurfaces[J]. Journal of Electronics &Information Technology, 2022, 44(12): 4116–4124. doi: 10.11999/JEIT220447
|
[10] |
CHENG Yongzhi, CHENG Zhengze, MAO Xuesong, et al. Ultra-thin multi-band polarization-insensitive microwave metamaterial absorber based on multiple-order responses using a single resonator structure[J]. Materials, 2017, 10(11): 1241. doi: 10.3390/ma10111241
|
[11] |
CHENG Yongzhi, LUO Hui, and CHEN Fu. Broadband metamaterial microwave absorber based on asymmetric sectional resonator structures[J]. Journal of Applied Physics, 2020, 127(21): 214902. doi: 10.1063/5.0002931
|
[12] |
ZHOU Fangkun, TAN Ruiyang, FANG Wei, et al. An ultra-broadband microwave absorber based on hybrid structure of stereo metamaterial and planar metasurface for the S, C, X and Ku bands[J]. Results in Physics, 2021, 30: 104811. doi: 10.1016/j.rinp.2021.104811
|
[13] |
DHUMAL A, BHARDWAJ A, and SRIVASTAVA K V. Polarization insensitive multilayered broadband absorber for L and S bands of the radar spectrum[J]. Microwave and Optical Technology Letters, 2021, 63(4): 1229–1235. doi: 10.1002/mop.32716
|
[14] |
LI Aobo, LUO Zhangjie, WAKATSUCHI H, et al. Nonlinear, active, and tunable metasurfaces for advanced electromagnetics applications[J]. IEEE Access, 2017, 5: 27439–27452. doi: 10.1109/ACCESS.2017.2776291
|
[15] |
HU Ning, WANG Ke, ZHANG Jihong, et al. Design of ultrawideband energy-selective surface for high-power microwave protection[J]. IEEE Antennas and Wireless Propagation Letters, 2019, 18(4): 669–673. doi: 10.1109/LAWP.2019.2900760
|
[16] |
ZHOU Lin, LIU Liangliang, and SHEN Zhongxiang. High-performance energy selective surface based on the double-resonance concept[J]. IEEE Transactions on Antennas and Propagation, 2021, 69(11): 7658–7666. doi: 10.1109/TAP.2021.3075548
|
[17] |
LUO Zhangjie, REN Xueyao, ZHOU Lin, et al. A high-performance nonlinear metasurface for spatial-wave absorption[J]. Advanced Functional Materials, 2022, 32(16): 2109544. doi: 10.1002/adfm.202109544
|
[18] |
KIM S, LI Aobo, LEE J, et al. Active self-tuning metasurface with enhanced absorbing frequency range for suppression of high-power surface currents[J]. IEEE Transactions on Antennas and Propagation, 2021, 69(5): 2759–2767. doi: 10.1109/TAP.2020.3032834
|
[19] |
WAKATSUCHI H, KIM S, RUSHTON J J, et al. Waveform-dependent absorbing metasurfaces[J]. Physical Review Letters, 2013, 111(24): 245501. doi: 10.1103/PhysRevLett.111.245501
|
[20] |
WAKATSUCHI H. Waveform-selective metasurfaces with free-space wave pulses at the same frequency[J]. Journal of Applied Physics, 2015, 117(16): 164904. doi: 10.1063/1.4919351
|
[21] |
TANIKAWA M, USHIKOSHI D, ASANO K, et al. Metasurface sensing difference in waveforms at the same frequency with reduced power level[J]. Scientific Reports, 2020, 10(1): 14283. doi: 10.1038/s41598-020-71242-0
|