高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于环形谐振器集成非线性电路的脉冲波超表面吸收器设计

程用志 钱莹洁 李志仁 本間晴貴 FATHNAN Ashif Aminulloh 若土弘樹

程用志, 钱莹洁, 李志仁, 本間晴貴, FATHNAN Ashif Aminulloh, 若土弘樹. 基于环形谐振器集成非线性电路的脉冲波超表面吸收器设计[J]. 电子与信息学报, 2023, 45(10): 3812-3820. doi: 10.11999/JEIT221435
引用本文: 程用志, 钱莹洁, 李志仁, 本間晴貴, FATHNAN Ashif Aminulloh, 若土弘樹. 基于环形谐振器集成非线性电路的脉冲波超表面吸收器设计[J]. 电子与信息学报, 2023, 45(10): 3812-3820. doi: 10.11999/JEIT221435
CHENG Yongzhi, QIAN Yingjie, LI Zhiren, HOMMA Haruki, FATHNAN Ashif Aminulloh, WAKATSUCHI Hiroki. The Design of Metasurface Absorber Based on the Ring-shaped Resonator Lumped with Nonlinear Circuit for a Pulse Wave[J]. Journal of Electronics & Information Technology, 2023, 45(10): 3812-3820. doi: 10.11999/JEIT221435
Citation: CHENG Yongzhi, QIAN Yingjie, LI Zhiren, HOMMA Haruki, FATHNAN Ashif Aminulloh, WAKATSUCHI Hiroki. The Design of Metasurface Absorber Based on the Ring-shaped Resonator Lumped with Nonlinear Circuit for a Pulse Wave[J]. Journal of Electronics & Information Technology, 2023, 45(10): 3812-3820. doi: 10.11999/JEIT221435

基于环形谐振器集成非线性电路的脉冲波超表面吸收器设计

doi: 10.11999/JEIT221435
基金项目: 日本国家信息与通信技术基金(06201),日本总务省(MIC)战略信息和通信研发促进计划(192106007),武汉科技大学研究生创新基金(CX2021102)
详细信息
    作者简介:

    程用志:男,博士,教授,研究方向为微波技术与天线、超表面/超材料电磁波调控技术与应用等

    钱莹洁:女,硕士生,研究方向为电磁超表面器件

    李志仁:男,硕士生,研究方向为电磁超表面器件

    本間晴貴:男,硕士生,研究方向为超表面电磁调制技术

    FATHNAN Ashif Aminulloh:男,博士后,研究方向为超表面电磁调制技术

    若土弘樹:男,博士,教授,研究方向为电磁工程、电磁超表面等

    通讯作者:

    程用志 chengyz@wust.edu.cn

  • 中图分类号: TN62

The Design of Metasurface Absorber Based on the Ring-shaped Resonator Lumped with Nonlinear Circuit for a Pulse Wave

Funds: The National Institute of Information and Communications Technology (NICT) of Japan (06201), The Japanese Ministry of Internal Affairs and Communications (MIC) under the Strategic Information and Communications R&D Promotion Program (192106007), The Graduate Innovation Fund project of Wuhan University of Science and Technology (CX2021102)
  • 摘要: 当前研究设计的超表面吸波器(MSA)具有良好的电磁(EM)波吸收特性,然而很少考虑入射电磁波形式和功率的影响。该文提出一种在相同频率下可以选择性吸收特定脉冲波的非线性电路MSA。设计的MSA单元结构由集成二极管与电阻电容并联的非线性电路的金属方环形谐振器,中间介质基板隔离层和底部接地层组成。结果显示该MSA对50 ns的短脉冲波在3.2 GHz吸收率可达97%,而对应同频率下的连续波吸收率只有21%。在3.2 GHz附近,该MSA对50 ns短脉冲波吸收率随着功率不同而动态调节且总保持在60%以上,而对应的连续波吸收率只固定在20%左右。当增大脉冲宽度时,设计的MSA吸收率先增大后显著减小。功率为0 dBm和–4 dBm的脉冲波TE模和TM模斜入射情况下,设计的MSA吸收率仍然超过60%。进一步的研究结果表明该MSA对短脉冲波吸收特性严重依赖于非线性电路电容以及单元结构几何参数设计。该研究在无线通信、抗电磁干扰、电磁兼容等领域具有潜在的应用前景。
  • 图  1  非线性电路MSA示意图以及简化的LC电路图

    图  2  设计的MSA中产生的感应电压和电流随响应时间的变化

    图  3  设计的MSA在不同功率脉冲波(PW)和连续波(CW)波形入射时的吸收率曲线

    图  4  设计的MSA在0 dBm功率下对不同脉冲宽度的脉冲波吸收率

    图  5  设计的MSA单元在TE和TM模极化斜入射输入功率为0 dBm和–4 dBm脉冲波的吸收率

    图  6  非线性电路MSA对不同电容值情况下的脉冲波吸收率

    图  7  非线性电路MSA对不同结构参数下脉冲波吸收率及简化LC电路拟合曲线

  • [1] MESHRAM M R, AGRAWAL N K, SINHA B, et al. Characterization of M-type barium hexagonal ferrite-based wide band microwave absorber[J]. Journal of Magnetism and Magnetic Materials, 2004, 271(2/3): 207–214. doi: 10.1016/j.jmmm.2003.09.045
    [2] NAM I W, CHOI J H, KIM C G, et al. Fabrication and design of electromagnetic wave absorber composed of carbon nanotube-incorporated cement composites[J]. Composite Structures, 2018, 206: 439–447. doi: 10.1016/j.compstruct.2018.07.058
    [3] ENGHETA N and ZIOLKOWSKI R W. Metamaterials: Physics and Engineering Explorations[M]. Hoboken: Wiley, 2006: 1–16.
    [4] HOLLOWAY C L, KUESTER E F, GORDON J A, et al. An overview of the theory and applications of metasurfaces: The two-dimensional equivalents of metamaterials[J]. IEEE Antennas and Propagation Magazine, 2012, 54(2): 10–35. doi: 10.1109/MAP.2012.6230714
    [5] HE Qiong, SUN Shulin, XIAO Shiyi, et al. High-Efficiency metasurfaces: Principles, realizations, and applications[J]. Advanced Optical Materials, 2018, 6(19): 1800415. doi: 10.1002/adom.201800415
    [6] FU Wenyue, HAN Yuchen, LI Jiandong, et al. Polarization insensitive wide-angle triple-band metamaterial bandpass filter[J]. Journal of Physics D:Applied Physics, 2016, 49(28): 285110. doi: 10.1088/0022-3727/49/28/285110
    [7] CHEN Lei, NIE Qianfan, RUAN Ying, et al. Light-controllable metasurface for microwave wavefront manipulation[J]. Optics Express, 2020, 28(13): 18742–18749. doi: 10.1364/oe.396802
    [8] 王俊瑶, 樊俊鹏, 舒好, 等. 基于石墨烯超表面的效率可调太赫兹聚焦透镜[J]. 光电工程, 2021, 48(4): 200319. doi: 10.12086/oee.2021.200319

    WANG Junyao, FAN Junpeng, SHU Hao, et al. Efficiency-tunable terahertz focusing lens based on graphene metasurface[J]. Opto-Electronic Engineering, 2021, 48(4): 200319. doi: 10.12086/oee.2021.200319
    [9] 王玥, 姚震宇, 崔子健, 等. 基于超表面的超宽带线极化转换特性研究[J]. 电子与信息学报, 2022, 44(12): 4116–4124. doi: 10.11999/JEIT220447

    WANG Yue, YAO Zhenyu, CUI Zijian, et al. Research on ultra-wideband linear polarization conversion characteristics based on metasurfaces[J]. Journal of Electronics &Information Technology, 2022, 44(12): 4116–4124. doi: 10.11999/JEIT220447
    [10] CHENG Yongzhi, CHENG Zhengze, MAO Xuesong, et al. Ultra-thin multi-band polarization-insensitive microwave metamaterial absorber based on multiple-order responses using a single resonator structure[J]. Materials, 2017, 10(11): 1241. doi: 10.3390/ma10111241
    [11] CHENG Yongzhi, LUO Hui, and CHEN Fu. Broadband metamaterial microwave absorber based on asymmetric sectional resonator structures[J]. Journal of Applied Physics, 2020, 127(21): 214902. doi: 10.1063/5.0002931
    [12] ZHOU Fangkun, TAN Ruiyang, FANG Wei, et al. An ultra-broadband microwave absorber based on hybrid structure of stereo metamaterial and planar metasurface for the S, C, X and Ku bands[J]. Results in Physics, 2021, 30: 104811. doi: 10.1016/j.rinp.2021.104811
    [13] DHUMAL A, BHARDWAJ A, and SRIVASTAVA K V. Polarization insensitive multilayered broadband absorber for L and S bands of the radar spectrum[J]. Microwave and Optical Technology Letters, 2021, 63(4): 1229–1235. doi: 10.1002/mop.32716
    [14] LI Aobo, LUO Zhangjie, WAKATSUCHI H, et al. Nonlinear, active, and tunable metasurfaces for advanced electromagnetics applications[J]. IEEE Access, 2017, 5: 27439–27452. doi: 10.1109/ACCESS.2017.2776291
    [15] HU Ning, WANG Ke, ZHANG Jihong, et al. Design of ultrawideband energy-selective surface for high-power microwave protection[J]. IEEE Antennas and Wireless Propagation Letters, 2019, 18(4): 669–673. doi: 10.1109/LAWP.2019.2900760
    [16] ZHOU Lin, LIU Liangliang, and SHEN Zhongxiang. High-performance energy selective surface based on the double-resonance concept[J]. IEEE Transactions on Antennas and Propagation, 2021, 69(11): 7658–7666. doi: 10.1109/TAP.2021.3075548
    [17] LUO Zhangjie, REN Xueyao, ZHOU Lin, et al. A high-performance nonlinear metasurface for spatial-wave absorption[J]. Advanced Functional Materials, 2022, 32(16): 2109544. doi: 10.1002/adfm.202109544
    [18] KIM S, LI Aobo, LEE J, et al. Active self-tuning metasurface with enhanced absorbing frequency range for suppression of high-power surface currents[J]. IEEE Transactions on Antennas and Propagation, 2021, 69(5): 2759–2767. doi: 10.1109/TAP.2020.3032834
    [19] WAKATSUCHI H, KIM S, RUSHTON J J, et al. Waveform-dependent absorbing metasurfaces[J]. Physical Review Letters, 2013, 111(24): 245501. doi: 10.1103/PhysRevLett.111.245501
    [20] WAKATSUCHI H. Waveform-selective metasurfaces with free-space wave pulses at the same frequency[J]. Journal of Applied Physics, 2015, 117(16): 164904. doi: 10.1063/1.4919351
    [21] TANIKAWA M, USHIKOSHI D, ASANO K, et al. Metasurface sensing difference in waveforms at the same frequency with reduced power level[J]. Scientific Reports, 2020, 10(1): 14283. doi: 10.1038/s41598-020-71242-0
  • 加载中
图(7)
计量
  • 文章访问数:  563
  • HTML全文浏览量:  244
  • PDF下载量:  127
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-11-15
  • 修回日期:  2023-04-16
  • 网络出版日期:  2023-04-26
  • 刊出日期:  2023-10-31

目录

    /

    返回文章
    返回