高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于四元数的直接判决并行恒模均衡算法

李森 徐明莹 张璐 邓明旭

李森, 徐明莹, 张璐, 邓明旭. 基于四元数的直接判决并行恒模均衡算法[J]. 电子与信息学报, 2023, 45(10): 3622-3630. doi: 10.11999/JEIT221413
引用本文: 李森, 徐明莹, 张璐, 邓明旭. 基于四元数的直接判决并行恒模均衡算法[J]. 电子与信息学报, 2023, 45(10): 3622-3630. doi: 10.11999/JEIT221413
LI Sen, XU Mingying, ZHANG Lu, DENG Mingxu. Concurrent Decision Directed and Constant Modulus Equalization Algorithm Based on Quaternion[J]. Journal of Electronics & Information Technology, 2023, 45(10): 3622-3630. doi: 10.11999/JEIT221413
Citation: LI Sen, XU Mingying, ZHANG Lu, DENG Mingxu. Concurrent Decision Directed and Constant Modulus Equalization Algorithm Based on Quaternion[J]. Journal of Electronics & Information Technology, 2023, 45(10): 3622-3630. doi: 10.11999/JEIT221413

基于四元数的直接判决并行恒模均衡算法

doi: 10.11999/JEIT221413
基金项目: 国家重点研发计划(2019YFE0111600),国家自然科学基金(51939001, 61971083),辽宁省振兴人才计划(XLYC2002078),鹏城实验室重点项目(PCL2021A03-1)
详细信息
    作者简介:

    李森:女,教授,研究方向为非高斯信号处理、通信信号处理、统计信号处理

    徐明莹:女,硕士生,研究方向为4元数理论、信道均衡算法

    张璐:女,硕士生,研究方向为信道均衡算法、阵列信号处理

    邓明旭:女,硕士生,研究方向为信道均衡算法、频谱感知

    通讯作者:

    李森 listen@dlmu.edu.cn

  • 中图分类号: TN911.72

Concurrent Decision Directed and Constant Modulus Equalization Algorithm Based on Quaternion

Funds: The National Key Research and Development Program of China (2019YFE0111600), The National Natural Science Foundation of China (51939001,61971083), Liao Ning Revitalization Talents Program ( XLYC2002078) , The Major Key Project of PCL(PCL2021A03-1)
  • 摘要: 近年来4元数理论成为各界学者研究的热点并被应用到许多领域。该文基于4元数自适应滤波算法对正交极化信道均衡问题进行研究。为了解决4元数恒模(QCMA)算法的相位模糊问题,该文将QCMA算法与4元数最小均方算法(QLMS)相结合提出一种4元数直接判决并行恒模(QCMA+DD-QLMS) 算法。基于广义哈密顿实演算(GHR)的梯度运算规则对新的算法做了理论推导并进行MATLAB实验仿真,仿真结果表明该文所提算法不但能够解决QCMA算法相位模糊问题,还具有更小的稳态均方误差(MSE)。
  • 图  1  4元数值无线通信系统模型

    图  2  4 元数直接判决并行恒模均衡算法原理图

    图  3  16Q2AM调制时均衡前3维星座图

    图  4  16Q2AM 调制时 QCMA 算法均衡后 2 维星座图

    图  5  16Q2AM 调制时 QCMA+DD-QLMS 算法均衡后 2 维星座图

    图  6  16Q2AM 调制时 QCMA 算法均衡后 3 维星座图

    图  7  16Q2AM 调制时 QCMA+DD-QLMS 算法均衡后 3 维星座图

    图  8  16Q2AM 调制时QCMA和 QCMA+DD-QLMS算法MSE收敛曲线对比图

    图  9  256Q2AM调制时均衡前3维星座图

    图  10  256Q2AM调制时QCMA算法均衡后2维星座图

    图  11  256Q2AM调制时QCMA+DD-QLMS算法均衡后2维星座图

    图  12  256Q2AM调制时QCMA算法均衡后3维星座图

    图  13  256Q2AM调制时QCMA+DD-QLMS算法均衡后3维星座图

    图  14  256Q2AM调制时QCMA和QCMA+DD-QLMS算法MSE收敛曲线对比图

    表  1  4-抽头4元数信道脉冲响应

    抽头数实部ijk
    0–1.1696–0.11350.0958–0.9583
    10.4989–0.3639–0.2515–0.6047
    21.0571–0.37911.49570.5183
    30.49110.86530.1552–0.8966
    下载: 导出CSV
  • [1] ISAEVA O M and SARYTCHEV V A. Quaternion presentations polarization state[C]. The 2nd Topical Symposium on Combined Optical-Microwave Earth and Atmosphere Sensing, Atlanta, US, 1995: 195–196.
    [2] 周珂, 吴成茂, 李昌兴. 基于四元数傅里叶变换的盲彩色图像质量评价[J]. 激光与光电子学进展, 2020, 57(18): 181021. doi: 10.3788/LOP57.181021

    ZHOU Ke, WU Chengmao, and LI Changxing. Quality assessment of blind color images using quaternion Fourier transform[J]. Laser &Optoelectronics Progress, 2020, 57(18): 181021. doi: 10.3788/LOP57.181021
    [3] SAOUD L S, AL-MARZOUQI H, and DERICHE M. Wind speed forecasting using the stationary wavelet transform and quaternion adaptive-gradient methods[J]. IEEE Access, 2021, 9: 127356–127367. doi: 10.1109/ACCESS.2021.3111667
    [4] JIANG Mengdi, LIU Wei, and LI Yi. Adaptive beamforming for vector-sensor arrays based on a reweighted zero-attracting quaternion-valued LMS algorithm[J]. IEEE Transactions on Circuits and Systems II:Express Briefs, 2016, 63(3): 274–278. doi: 10.1109/TCSII.2015.2482464
    [5] GAUDET C J and MAIDA A S. Deep quaternion networks[C]. 2018 International Joint Conference on Neural Networks (IJCNN), Rio de Janeiro, Brazil, 2018: 1–8.
    [6] 田新宇. 基于四元数的神经网络算法研究[D]. [硕士论文], 电子科技大学, 2022.

    TIAN Xinyu. Research on neural network algorithm based on quaternion[D]. [Master dissertation], University of Electronic Science and Technology of China, 2022.
    [7] TOOK C C and MANDIC D P. The quaternion LMS algorithm for adaptive filtering of hypercomplex processes[J]. IEEE Transactions on Signal Processing, 2009, 57(4): 1316–1327. doi: 10.1109/TSP.2008.2010600
    [8] XU Dongpo, JAHANCHAHI C, TOOK C C, et al. Quaternion derivatives: The GHR calculus[EB/OL]. https://arxiv.org/abs/1409.8168, 2014.
    [9] MENGÜÇ E C. Novel quaternion-valued least-mean kurtosis adaptive filtering algorithm based on the GHR calculus[J]. IET Signal Processing, 2018, 12(4): 487–495. doi: 10.1049/iet-spr.2017.0340
    [10] MENGÜÇ E C, ACIR N, and MANDIC D P. Widely linear quaternion-valued least-mean kurtosis algorithm[J]. IEEE Transactions on Signal Processing, 2020, 68: 5914–5922. doi: 10.1109/TSP.2020.3029959
    [11] OGUNFUNMI T and SAFARIAN C. The quaternion stochastic information gradient algorithm for nonlinear adaptive systems[J]. IEEE Transactions on Signal Processing, 2019, 67(23): 5909–5921. doi: 10.1109/TSP.2019.2944757
    [12] STERN S and FISCHER R F H. Quaternion-valued multi-user MIMO transmission via dual-polarized antennas and QLLL reduction[C]. 2018 25th International Conference on Telecommunications (ICT), Saint Malo, France, 2018: 63–69.
    [13] WYSOCKI B J, WYSOCKI T A, and SEBERRY J. Modeling dual polarization wireless fading channels using quaternions[C]. Joint IST Workshop on Mobile Future, 2006 and the Symposium on Trends in Communications. SympoTIC '06, Bratislava, Slovakia, 2006: 68–71.
    [14] LIU Wei. Antenna array signal processing for quaternion-valued wireless communication systems[C]. 2014 IEEE Benjamin Franklin Symposium on Microwave and Antenna Sub-systems for Radar, Telecommunications, and Biomedical Applications (BenMAS), Philadelphia, USA, 2014: 1–3.
    [15] LIU Wei. Channel equalization and beamforming for quaternion-valued wireless communication systems[J]. Journal of the Franklin Institute, 2017, 354(18): 8721–8733. doi: 10.1016/j.jfranklin.2016.10.043
    [16] 曾乐雅, 许华, 王天睿. 自适应切换双模盲均衡算法[J]. 电子与信息学报, 2016, 38(11): 2780–2786. doi: 10.11999/JEIT160099

    ZENG Leya, XU Hua, and WANG Tianrui. Dual mode blind equalization algorithm based on adaptive switching[J]. Journal of Electronics &Information Technology, 2016, 38(11): 2780–2786. doi: 10.11999/JEIT160099
    [17] XU Tongtong, XIANG Zheng, YANG Hua, et al. Concurrent modified constant modulus algorithm and decision directed scheme with Barzilai-Borwein method[J]. Frontiers in Neurorobotics, 2021, 15: 699221. doi: 10.3389/fnbot.2021.699221
    [18] LI Sen, WANG Yan, and LIN Bin. Concurrent blind channel equalization in impulsive noise environments[J]. Chinese Journal of Electronics, 2013, 22(4): 741–746.
    [19] 胡婉如, 梅如如, 崔健, 等. 一种基于CMA和DDLMS算法的双模式盲均衡算法[J]. 电讯技术, 2021, 61(1): 83–88. doi: 10.3969/j.issn.1001-893x.2021.01.013

    HU Wanru, MEI Ruru, CUI Jian, et al. A dual-mode blind equalization algorithm based on CMA and DDLMS algorithm[J]. Telecommunication Engineering, 2021, 61(1): 83–88. doi: 10.3969/j.issn.1001-893x.2021.01.013
    [20] 陈康. 室内可见光通信自适应均衡技术的研究[D]. [硕士论文], 长春理工大学, 2019.

    CHEN Kang. Research on adaptive equalization technology of indoor visible light communication[D]. [Master dissertation], Changchun University of Science and Technology, 2019.
    [21] CHEN S, COOK T B, and ANDERSON L C. A comparative study of two blind FIR equalizers[J]. Digital Signal Processing, 2004, 14(1): 18–36. doi: 10.1016/j.dsp.2003.04.001
  • 加载中
图(14) / 表(1)
计量
  • 文章访问数:  267
  • HTML全文浏览量:  156
  • PDF下载量:  39
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-11-09
  • 修回日期:  2023-07-05
  • 网络出版日期:  2023-07-13
  • 刊出日期:  2023-10-31

目录

    /

    返回文章
    返回