高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于长基线干涉仪相位差的多站无源定位方法

张敏 张文俊 李曦 郭福成

张敏, 张文俊, 李曦, 郭福成. 基于长基线干涉仪相位差的多站无源定位方法[J]. 电子与信息学报, 2023, 45(11): 3868-3876. doi: 10.11999/JEIT221362
引用本文: 张敏, 张文俊, 李曦, 郭福成. 基于长基线干涉仪相位差的多站无源定位方法[J]. 电子与信息学报, 2023, 45(11): 3868-3876. doi: 10.11999/JEIT221362
ZHANG Min, ZHANG Wenjun, LI Xi, GUO Fucheng. Passive Localization by Multiple Observers Based on the Phase Difference of the Arrival of a Long Baseline Interferometer[J]. Journal of Electronics & Information Technology, 2023, 45(11): 3868-3876. doi: 10.11999/JEIT221362
Citation: ZHANG Min, ZHANG Wenjun, LI Xi, GUO Fucheng. Passive Localization by Multiple Observers Based on the Phase Difference of the Arrival of a Long Baseline Interferometer[J]. Journal of Electronics & Information Technology, 2023, 45(11): 3868-3876. doi: 10.11999/JEIT221362

基于长基线干涉仪相位差的多站无源定位方法

doi: 10.11999/JEIT221362
基金项目: 国家自然科学基金(61901494)
详细信息
    作者简介:

    张敏:男,副教授,研究方向为侦察信号处理、无源定位、目标跟踪技术等

    张文俊:男,博士生,研究方向为无源定位、目标跟踪技术

    李曦:男,助理研究员,研究方向为无源定位、目标跟踪技术

    郭福成:男,教授,博士生导师,研究方向为侦察信号处理、无源定位、目标跟踪技术等

    通讯作者:

    李曦 lx_njgc@163.com

  • 中图分类号: TN971

Passive Localization by Multiple Observers Based on the Phase Difference of the Arrival of a Long Baseline Interferometer

Funds: The National Natural Science Foundation of China (61901494)
  • 摘要: 针对常用多站无源定位技术存在时差(TDOA)/频差(FDOA)定位对超低旁瓣辐射源适应性差、测向(DOA)定位的造价成本和系统复杂度高等缺点,该文提出了一种基于相位差(PDOA)的多站无源定位新体制,利用每个观测站上至少两个接收天线和通道构成的长基线干涉仪(LBI),通过测量辐射源信号到达长基线干涉仪天线的相位差实现定位。针对相位差的2π模糊引入的非线性和非连续性,提出了一种基于多假设迭代优化的定位方法,首先利用一组相位差确定多个可能的辐射源位置初始值,然后采用高斯-牛顿(GN)方法对每个位置初始值进行迭代优化并计算代价函数,最后选择具有最小代价函数的估计值作为最终的定位结果。该方法可获取稳健的迭代初始值,算法运算量适中。仿真结果表明该定位方法的均方根误差(RMSE)在高斯观测噪声条件下可达到克拉美罗下限(CRLB)。
  • 图  1  定位场景示意图

    图  2  定位原理示意图

    图  3  PDOA测量原理示意图

    图  4  定位代价函数示意图

    图  5  定位方法流程示意图

    图  6  初值选取方法示意图

    图  7  仿真场景示意图

    图  8  不同PDOA模型下定位RMSE

    图  9  不同定位方法的RMSE

  • [1] ATIF M, AHMAD R, AHMAD W, et al. UAV-assisted wireless localization for search and rescue[J]. IEEE Systems Journal, 2021, 15(3): 3261–3272. doi: 10.1109/JSYST.2020.3041573
    [2] ARAFAT M Y and MOH S. Localization and clustering based on swarm intelligence in UAV networks for emergency communications[J]. IEEE Internet of Things Journal, 2019, 6(5): 8958–8976. doi: 10.1109/JIOT.2019.2925567
    [3] BABJAK M, OCHODNICKÝ J, and MATOUŠEK Z. Wideband electronic reconnaissance and localization in jamming environment[C]. Proceedings of 2017 Communication and Information Technologies (KIT), Vysoke Tatry, Slovakia, 2017: 1–5.
    [4] SUN Yimao, HO K C, and WAN Qun. Solution and analysis of TDOA localization of a near or distant source in closed form[J]. IEEE Transactions on Signal Processing, 2019, 67(2): 320–335. doi: 10.1109/TSP.2018.2879622
    [5] 孙霆, 董春曦, 毛昱. 一种基于半定松弛技术的TDOA-FDOA无源定位算法[J]. 电子与信息学报, 2020, 42(7): 1599–1605. doi: 10.11999/JEIT190435

    SUN Ting, DONG Chunxi, and MAO Yu. A TDOA-FDOA passive positioning algorithm based on the semi-definite relaxation technique[J]. Journal of Electronics &Information Technology, 2020, 42(7): 1599–1605. doi: 10.11999/JEIT190435
    [6] JIA Tianyi, WANG Haiyan, SHEN Xiaohong, et al. Target localization based on structured total least squares with hybrid TDOA-AOA measurements[J]. Signal Processing, 2018, 143: 211–221. doi: 10.1016/j.sigpro.2017.09.011
    [7] CELENTANO S, FARINA A, TIMMONERI L, et al. Co-existence of AESA (active electronically scanned array) radar and electronic warfare (EW) systems on board of a military ship[C]. Proceedings of 2020 IEEE Radar Conference (RadarConf20), Florence, Italy, 2020: 1–5.
    [8] DOĞANÇAY K. Passive emitter localization using weighted instrumental variables[J]. Signal Processing, 2004, 84(3): 487–497. doi: 10.1016/j.sigpro.2003.11.014
    [9] ZHANG Min, GUO Fucheng, and ZHOU Yiyu. A closed-form solution for moving source localization using LBI changing rate of phase difference only[J]. Chinese Journal of Aeronautics, 2014, 27(2): 365–374. doi: 10.1016/j.cja.2014.02.013
    [10] HMAM H and DOGANCAY K. Passive localization of scanning emitters[J]. IEEE Transactions on Aerospace and Electronic Systems, 2010, 46(2): 944–951. doi: 10.1109/TAES.2010.5461671
    [11] GROVES P D. Principles of GNSS, Inertial, and Multisensor Integrated Navigation Systems[M]. 2nd ed. Boston: Artech House, 2013: 72–78.
    [12] ZHANG Tienan, MAO Xingpeng, HOU Yuguan, et al. An improved grid-search method for the identity-test of ionosphere-layer virtual heights via TDOA measurements[J]. IEEE Access, 2019, 7: 92861–92870. doi: 10.1109/ACCESS.2019.2927656
    [13] CHEN Hui, BALLAL T, SAEED N, et al. A joint TDOA-PDOA localization approach using particle swarm optimization[J]. IEEE Wireless Communications Letters, 2020, 9(8): 1240–1244. doi: 10.1109/LWC.2020.2986756
    [14] MARDIA K V and JUPP P E. Directional Statistics[M]. Chichester: John Wiley & Sons Ltd., 1999: 13–23.
    [15] BAHLMANN C. Directional features in online handwriting recognition[J]. Pattern Recognition, 2006, 39(1): 115–125. doi: 10.1016/j.patcog.2005.05.012
    [16] GIBBS B P. Advanced Kalman Filtering, Least-Squares and Modeling[M]. Hoboken: John Wiley & Sons Inc. , 2011: 259–282.
    [17] 李腾, 郭福成, 姜文利. 基于旋转干涉仪模糊相位差的多假设NLS定位算法[J]. 电子与信息学报, 2012, 34(4): 956–962. doi: 10.3724/SP.J.1146.2011.00699

    LI Teng, GUO Fucheng, and JIANG Wenli. Multiple hypothesis NLS location algorithm based on ambiguous phase difference measured by a rotating interferometer[J]. Journal of Electronics &Information Technology, 2012, 34(4): 956–962. doi: 10.3724/SP.J.1146.2011.00699
    [18] 潘玉剑, 宋慧娜. 基于混合基线的任意平面阵列干涉仪测向方法[J]. 电子与信息学报, 2021, 43(12): 3703–3709. doi: 10.11999/JEIT210406

    PAN Yujian and SONG Huina. Direction finding method with arbitrary planar array based on mixed baselines[J]. Journal of Electronics &Information Technology, 2021, 43(12): 3703–3709. doi: 10.11999/JEIT210406
    [19] KAY S M. Fundamentals of Statistical Signal Processing: Estimation Theory[M]. Englewood Cliffs: PTR Prentice-Hall, 1993: 39–50.
  • 加载中
图(9)
计量
  • 文章访问数:  580
  • HTML全文浏览量:  260
  • PDF下载量:  203
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-10-31
  • 修回日期:  2023-03-06
  • 网络出版日期:  2023-03-14
  • 刊出日期:  2023-11-28

目录

    /

    返回文章
    返回