[1] |
乌立克 R J, 洪申, 译. 工程水声原理[M]. 北京: 国防工业出版社, 1972: 1–2.URICK R J, HONG Shen. translation. Principles of Engineering Underwater Sound[M]. Beijing: National Defense Industry Press, 1972: 1–2.
|
[2] |
HINTON G E and SALAKHUTDINOV R R. Reducing the dimensionality of data with neural networks[J]. Science, 2006, 313(5786): 504–507. doi: 10.1126/science.1127647
|
[3] |
KRIZHEVSKY A, SUTSKEVER I, and HINTON G E. Imagenet classification with deep convolutional neural networks[C]. Proceedings of the 25th International Conference on Neural Information Processing Systems, Lake Tahoe, USA, 2012.
|
[4] |
LIU Ze, LIN Yutong, CAO Yue, et al. Swin transformer: Hierarchical vision transformer using shifted windows[C]. 2021 IEEE/CVF International Conference on Computer Vision (ICCV), Montreal, Canada, 2021: 9992–10002.
|
[5] |
VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need[C]. Proceedings of the 31st International Conference on Neural Information Processing Systems, Long Beach, USA 2017.
|
[6] |
GOODFELLOW I J, POUGET-ABADIE J, MIRZA M, et al. Generative adversarial nets[C]. Proceedings of the 27th International Conference on Neural Information Processing Systems, Montreal, Canada, 2014.
|
[7] |
PARK S R and LEE J. A fully convolutional neural network for speech enhancement[C]. Interspeech 2017, 18th Annual Conference of the International Speech Communication Association, Stockholm, Sweden, 2017.
|
[8] |
HU Gang, WANG Kejun, and LIU Liangliang. Underwater acoustic target recognition based on depthwise separable convolution neural networks[J]. Sensors, 2021, 21(4): 1429. doi: 10.3390/s21041429
|
[9] |
李理, 李向欣, 殷敬伟. 基于生成对抗网络的舰船辐射噪声分类方法研究[J]. 电子与信息学报, 2022, 44(6): 1974–1983. doi: 10.11999/JEIT211077LI Li, LI Xiangxin, and YIN Jingwei. Research on classification algorithm of ship radiated noise data based on generative adversarial network[J]. Journal of Electronics&Information Technology, 2022, 44(6): 1974–1983. doi: 10.11999/JEIT211077
|
[10] |
卢安安. 基于深度学习方法的水下声音目标识别研究[D]. [硕士论文], 哈尔滨工程大学, 2017.LU Anan. Underwater acoustic classification based on deep learning[D]. [Master dissertation], Harbin Engineering University, 2017.
|
[11] |
郝宇昕. 基于深度神经网络的舰船辐射噪声特征分类技术[D]. [硕士论文], 哈尔滨工程大学, 2019.HAO Yuxin. Ship radiated noise classification method based on deep neural network[D]. [Master dissertation], Harbin Engineering University, 2019.
|
[12] |
姜岩松. 基于生成对抗网络的水声信号识别与分离研究[D]. [硕士论文], 哈尔滨工程大学, 2021.JIANG Yansong. Research on underwater acoustic signal recognition and separation based on generative adversarial network[D]. [Master dissertation], Harbin Engineering University, 2021.
|
[13] |
胡钢. 基于深度学习的水下目标识别和运动行为分析技术研究[D]. [博士论文], 哈尔滨工程大学, 2021.HU Gang. Research on underwater target recognition and motion behavior analysis technology based on deep learning[D]. [Ph. D. dissertation], Harbin Engineering University, 2021.
|
[14] |
LI Junhao and YANG Honghui. The underwater acoustic target timbre perception and recognition based on the auditory inspired deep convolutional neural network[J]. Applied Acoustics, 2021, 182: 108210. doi: 10.1016/j.apacoust.2021.108210
|
[15] |
YANG Honghui, ZHENG Kaifeng, and LI Junhao. Open set recognition of underwater acoustic targets based on GRU-CAE collaborative deep learning network[J]. Applied Acoustics, 2022, 193: 108774. doi: 10.1016/j.apacoust.2022.108774
|
[16] |
黄擎, 曾向阳. 小波分解和改进卷积神经网络相融合的水声目标识别方法[J]. 哈尔滨工程大学学报, 2022, 43(2): 159–165. doi: 10.11990/jheu.202011040HUANG Qing and ZENG Xiangyang. An underwater acoustic target recognition method combining wavelet decomposition and an improved convolutional neural network[J]. Journal of Harbin Engineering University, 2022, 43(2): 159–165. doi: 10.11990/jheu.202011040
|
[17] |
薛灵芝, 曾向阳, 杨爽. 基于生成对抗网络的水声目标识别算法[J]. 兵工学报, 2021, 42(11): 2444–2452. doi: 10.3969/j.issn.1000-1093.2021.11.018XUE Lingzhi, ZENG Xiangyang, and YANG Shuang. Underwater acoustic target recognition algorithm based on generative adversarial networks[J]. Acta Armamentarii, 2021, 42(11): 2444–2452. doi: 10.3969/j.issn.1000-1093.2021.11.018
|
[18] |
杨爽, 曾向阳. 基于多尺度稀疏简单循环单元模型的水声目标识别方法[J]. 哈尔滨工程大学学报, 2022, 43(7): 958–964. doi: 10.11990/jheu.202105048YANG Shuang and ZENG Xiangyang. Underwater acoustic target recognition method based on the multi-scale sparse simple recurrent unit model[J]. Journal of Harbin Engineering University, 2022, 43(7): 958–964. doi: 10.11990/jheu.202105048
|
[19] |
ZHOU Xingyue, YANG Kunde, and DUAN Rui. Deep learning based on striation images for underwater and surface target classification[J]. IEEE Signal Processing Letters, 2019, 26(9): 1378–1382. doi: 10.1109/LSP.2019.2919102
|
[20] |
IRFAN M, ZHENG Jiangbin, ALI S, et al. DeepShip: An underwater acoustic benchmark dataset and a separable convolution based autoencoder for classification[J]. Expert Systems with Applications, 2021, 183: 115270. doi: 10.1016/j.eswa.2021.115270
|
[21] |
IRFAN M, ZHENG Jiangbin, IQBAL M, et al. Brain inspired lifelong learning model based on neural based learning classifier system for underwater data classification[J]. Expert Systems with Applications, 2021, 186: 115798. doi: 10.1016/j.eswa.2021.115798
|
[22] |
ZHANG Qi, DA Lianglong, ZHANG Yanhou, et al. Integrated neural networks based on feature fusion for underwater target recognition[J]. Applied Acoustics, 2021, 182: 108261. doi: 10.1016/j.apacoust.2021.108261
|
[23] |
张少康, 王超, 田德艳, 等. 长短时记忆网络水下目标噪声智能识别方法[J]. 舰船科学技术, 2019, 41(12): 181–185. doi: 10.3404/j.issn.1672-7649.2019.12.035ZHANG Shaokang, WANG Chao, TIAN Deyan, et al. Intelligent recognition of underwater target noise based on long short-term memory networks[J]. Ship Science and Technology, 2019, 41(12): 181–185. doi: 10.3404/j.issn.1672-7649.2019.12.035
|
[24] |
张少康, 王超, 孙芹东. 基于多类别特征融合的水声目标噪声识别分类技术[J]. 西北工业大学学报, 2020, 38(2): 366–376. doi: 10.1051/jnwpu/20203820366ZHANG Shaokang, WANG Chao, and SUN Qindong. Underwater target noise recognition and classification technology based on multi-classes feature fusion[J]. Journal of Northwestern Polytechnical University, 2020, 38(2): 366–376. doi: 10.1051/jnwpu/20203820366
|
[25] |
程玉胜, 邱家兴, 刘振, 等. 水声被动目标识别技术挑战与展望[J]. 应用声学, 2019, 38(4): 653–659. doi: 10.11684/j.issn.1000-310X.2019.04.023CHENG Yusheng, QIU Jiaxing, LIU Zhen, et al. Challenges and prospects of underwater acoustic passive target recognition technology[J]. Journal of Applied Acoustics, 2019, 38(4): 653–659. doi: 10.11684/j.issn.1000-310X.2019.04.023
|
[26] |
徐源超, 蔡志明, 孔晓鹏. 基于双对数谱和卷积网络的船舶辐射噪声分类[J]. 电子与信息学报, 2022, 44(6): 1947–1955. doi: 10.11999/JEIT211407XU Yuanchao, CAI Zhiming, and KONG Xiaopeng. Classification of ship radiated noise based on bi-logarithmic scale spectrum and convolutional network[J]. Journal of Electronics&Information Technology, 2022, 44(6): 1947–1955. doi: 10.11999/JEIT211407
|
[27] |
徐源超, 蔡志明. 水声目标分类算法性能评估[J]. 哈尔滨工程大学学报, 2020, 41(10): 1559–1565. doi: 10.11990/jheu.202007114XU Yuanchao and CAI Zhiming. Performance evaluation on the algorithm of underwater acoustic target classification[J]. Journal of Harbin Engineering University, 2020, 41(10): 1559–1565. doi: 10.11990/jheu.202007114
|
[28] |
徐萍. 水声目标辐射噪声特征提取与识别技术研究[D]. [硕士论文], 东南大学, 2019.XU Ping. Research on feature extraction and recognition technology of underwater acoustic target radiated noise[D]. [Master dissertation], Southeast University, 2019.
|
[29] |
张昊. 水声目标辐射噪声信号增强与特征辨识技术研究[D]. [硕士论文], 东南大学, 2021.ZHANG Hao. Research on enhancement and feature recognition technology of radiated noise signal of underwater acoustic target[D]. [Master dissertation], Southeast University, 2021.
|
[30] |
倪俊帅, 赵梅, 胡长青. 基于深度学习的舰船辐射噪声多特征融合分类[J]. 声学技术, 2020, 39(3): 366–371. doi: 10.16300/j.cnki.1000-3630.2020.03.019NI Junshuai, ZHAO Mei, and HU Changqing. Multi-feature fusion classification of ship radiated noise based on deep learning[J]. Technical Acoustics, 2020, 39(3): 366–371. doi: 10.16300/j.cnki.1000-3630.2020.03.019
|
[31] |
李琛, 黄兆琼, 徐及, 等. 使用深度学习的多通道水下目标识别[J]. 声学学报, 2020, 45(4): 506–514. doi: 10.15949/j.cnki.0371-0025.2020.04.007LI Chen, HUANG Zhaoqiong, XU Ji, et al. Multi-channel underwater target recognition using deep learning[J]. Acta Acustica, 2020, 45(4): 506–514. doi: 10.15949/j.cnki.0371-0025.2020.04.007
|
[32] |
FILHO W S, DE SEIXAS J M, and DE MOURA N N. Preprocessing passive sonar signals for neural classification[J]. IET Radar,Sonar&Navigation, 2011, 5(6): 605–612. doi: 10.1049/iet-rsn.2010.0157
|
[33] |
DE B A, BARROS R E, and EBECKEN N F F. Development of a ship classification method based on Convolutional neural network and Cyclostationarity Analysis[J]. Mechanical Systems and Signal Processing, 2022, 170: 108778. doi: 10.1016/j.ymssp.2021.108778
|
[34] |
MOSAVI M R, KHISHE M, NASERI M J, et al. Multi-layer perceptron neural network utilizing adaptive best-mass gravitational search algorithm to classify sonar dataset[J]. Archives of Acoustics, 2019, 44(1): 137–151. doi: 10.24425/aoa.2019.126360
|
[35] |
JAHROMI M S, BAGHERI V, ROSTAMI H, et al. Feature extraction in fractional fourier domain for classification of passive sonar signals[J]. Journal of Signal Processing Systems, 2019, 91(5): 511–520. doi: 10.1007/s11265-018-1347-x
|
[36] |
KHISHE M and MOSAVI M R. Classification of underwater acoustical dataset using neural network trained by Chimp Optimization Algorithm[J]. Applied Acoustics, 2020, 157: 107005. doi: 10.1016/j.apacoust.2019.107005
|
[37] |
SAFFARI A, KHISHE M, and ZAHIRI S H. Fuzzy-ChOA: An improved chimp optimization algorithm for marine mammal classification using artificial neural network[J]. Analog Integrated Circuits and Signal Processing, 2022, 111(3): 403–417. doi: 10.1007/s10470-022-02014-1
|
[38] |
BAQAR M and ZAIDI S S H. Performance evaluation of linear and multi-linear subspace learning techniques for object classification based on underwater acoustics[C]. 2017 14th International Bhurban Conference on Applied Sciences and Technology, Islamabad, Pakistan, 2017: 675–683.
|
[39] |
GONZÁLEZ-HERNÁNDEZ F R, SÁNCHEZ-FERNÁNDEZ L P, SUÁREZ-GUERRA S, et al. Marine mammal sound classification based on a parallel recognition model and octave analysis[J]. Applied Acoustics, 2017, 119: 17–28. doi: 10.1016/j.apacoust.2016.11.016
|
[40] |
ZHONG Ming, TORTEROTOT M, BRANCH T A, et al. Detecting, classifying, and counting blue whale calls with Siamese neural networks[J]. The Journal of the Acoustical Society of America, 2021, 149(5): 3086–3094. doi: 10.1121/10.0004828
|
[41] |
COLE A M. Automated open circuit scuba diver detection with low cost passive sonar and machine learning[D]. [Master dissertation], Massachusetts Institute of Technology, 2019.
|
[42] |
BIANCO M J, GERSTOFT P, TRAER J, et al. Machine learning in acoustics: Theory and applications[J]. The Journal of the Acoustical Society of America, 2019, 146(5): 3590–3628. doi: 10.1121/1.5133944
|
[43] |
周飞燕, 金林鹏, 董军. 卷积神经网络研究综述[J]. 计算机学报, 2017, 40(6): 1229–1251. doi: 10.11897/SP.J.1016.2017.01229ZHOU Feiyan, JIN Linpeng, and DONG Jun. Review of convolutional neural network[J]. Chinese Journal of Computers, 2017, 40(6): 1229–1251. doi: 10.11897/SP.J.1016.2017.01229
|
[44] |
GRAVES A. Long short-term memory[M]. GRAVES A. Supervised Sequence Labelling with Recurrent Neural Networks. Berlin: Springer, 2012: 37–45.
|
[45] |
GOODFELLOW I, BENGIO Y, and COURVILLE A. Deep Learning[M]. Cambridge: MIT Press, 2016: 243.
|
[46] |
张健. 基于深度学习的水下目标识别的研究[D]. [硕士论文], 电子科技大学, 2020.ZHANG Jian. Research on underwater target recognition based on deep learning[D]. [Master dissertation], University of Electronic Science and Technology of China, 2020.
|
[47] |
任晨曦, 王黎明, 韩星程, 等. 基于联合神经网络的水声目标识别方法[J]. 舰船科学技术, 2022, 44(1): 136–141. doi: 10.3404/j.issn.1672-7649.2022.01.026REN Chenxi, WANG Liming, HAN Xingcheng, et al. Underwater acoustic target recognition method based on joint neural network[J]. Ship Science and Technology, 2022, 44(1): 136–141. doi: 10.3404/j.issn.1672-7649.2022.01.026
|
[48] |
HAN Xingcheng, REN Chenxi, WANG Liming, et al. Underwater acoustic target recognition method based on a joint neural network[J]. PloS One, 2022, 17(4): e0266425. doi: 10.1371/journal.pone.0266425
|
[49] |
曾赛, 杜选民. 水下目标多模态深度学习分类识别研究[J]. 应用声学, 2019, 38(4): 589–595. doi: 10.11684/j.issn.1000-310X.2019.04.016ZENG Sai and DU Xuanmin. Multimodal underwater target recognition method based on deep learning[J]. Journal of Applied Acoustics, 2019, 38(4): 589–595. doi: 10.11684/j.issn.1000-310X.2019.04.016
|
[50] |
杨路飞, 章新华, 吴秉坤, 等. 基于MFCC特征的被动水声目标深度学习分类方法[J]. 舰船科学技术, 2020, 42(10): 129–133. doi: 10.3404/j.issn.1672-7649.2020.10.025YANG Lufei, ZHANG Xinhua, WU Bingkun, et al. Research on the classification method of passive acoustic target depth learning based on MFCC[J]. Ship Science and Technology, 2020, 42(10): 129–133. doi: 10.3404/j.issn.1672-7649.2020.10.025
|
[51] |
AL-BETAR M A, ALYASSERI Z A A, AWADALLAH M A, et al. Coronavirus herd immunity optimizer (CHIO)[J]. Neural Computing and Applications, 2021, 33(10): 5011–5042. doi: 10.21203/rs.3.rs-27214/v1
|
[52] |
史广智, 胡均川. 舰船噪声调制谱谐波族结构特性理论分析[J]. 声学学报, 2007, 32(1): 19–25. doi: 10.3321/j.issn:0371-0025.2007.01.004SHI Guangzhi and HU Junchuan. Theoretical analysis of the structure law of ship radiated-noise demodulation spectrum harmonic clan feature[J]. Acta Acustica, 2007, 32(1): 19–25. doi: 10.3321/j.issn:0371-0025.2007.01.004
|
[53] |
程玉胜, 张宝华, 高鑫, 等. 船舶辐射噪声解调谱相位耦合特性与应用[J]. 声学学报, 2012, 37(1): 25–29. doi: 10.15949/j.cnki.0371-0025.2012.01.004CHENG Yusheng, ZHANG Baohua, GAO Xin, et al. Phase-coupling characteristics of ship radiated-noise demodulation spectrum and application[J]. Acta Acustica, 2012, 37(1): 25–29. doi: 10.15949/j.cnki.0371-0025.2012.01.004
|
[54] |
张奇, 张延厚, 贾书阳, 等. 一种脉冲分布噪声下DEMON谱提取方法[C]. 中国声学学会水声学分会2021-2022年学术会议论文集, 青岛, 2021: 261–263.ZHANG Qi, ZHANG Yanhou, JIA Shuyang, et al. A DEMON spectrum extraction method under pulse distribution noise[C]. Hydroacoustics Branch of Chinese Acoustical Society, Qingdao, China, 2021: 261–263.
|
[55] |
刘振, 邱家兴, 程玉胜. 深度神经网络在螺旋桨叶片数识别中的应用[J]. 声学技术, 2019, 38(4): 459–463. doi: 10.16300/j.cnki.1000-3630.2019.04.017LIU Zhen, QIU Jiaxing, and CHENG Yusheng. Application of deep neural network in blade-number recognition of ship propeller[J]. Technical Acoustics, 2019, 38(4): 459–463. doi: 10.16300/j.cnki.1000-3630.2019.04.017
|
[56] |
LU Jiamin, SONG Sanming, HU Zhiqiang, et al. Fundamental frequency detection of underwater acoustic target using DEMON spectrum and CNN network[C]. 2020 3rd International Conference on Unmanned Systems, Harbin, China, 2020: 778–784.
|
[57] |
GONZALEZ S and BROOKES M. A pitch estimation filter robust to high levels of noise (PEFAC)[C]. 19th European Signal Processing Conference, Barcelona, Spain, 2011: 451–455.
|
[58] |
卢佳敏, 宋三明, 景严, 等. 基于DEMON谱和LSTM网络的水下运动目标噪声基频检测[J]. 应用声学, 2021, 40(5): 745–753. doi: 10.11684/j.issn.1000-310X.2021.05.013LU Jiamin, SONG Sanming, JING Yan, et al. Fundamental frequency detection of underwater target noises using DEMON spectrum and LSTM network[J].Journal of Applied Acoustics, 2021, 40(5): 745–753. doi: 10.11684/j.issn.1000-310X.2021.05.013
|
[59] |
白敬贤, 高天德, 夏润鹏. 基于DEMON谱信息提取算法的目标识别方法研究[J]. 声学技术, 2017, 36(1): 88–92. doi: 10.16300/j.cnki.1000-3630.2017.01.016BAI Jingxian, GAO Tiande, and XIA Runpeng. Target recognition based on the information extraction algorithm of DEMON spectrum[J]. Technical Acoustics, 2017, 36(1): 88–92. doi: 10.16300/j.cnki.1000-3630.2017.01.016
|
[60] |
杨日杰, 郑晓庆, 韩建辉, 等. 基于序列匹配的螺旋桨轴频自动提取方法[J]. 振动与冲击, 2018, 37(16): 57–61. doi: 10.13465/j.cnki.jvs.2018.16.009YANG Rijie, ZHENG Xiaoqing, HAN Jianhui, et al. An automatic extraction method of propeller shaft frequency based on sequence matching[J]. Journal of Vibration and Shock, 2018, 37(16): 57–61. doi: 10.13465/j.cnki.jvs.2018.16.009
|
[61] |
王小宇, 李凡, 曹琳, 等. 改进的卷积神经网络实现端到端的水下目标自动识别[J]. 信号处理, 2020, 36(6): 958–965. doi: 10.16798/j.issn.1003-0530.2020.06.018WANG Xiaoyu, LI Fan, CAO Lin, et al. End to end underwater targets recognition using the modified convolutional neural network[J]. Journal of Signal Processing, 2020, 36(6): 958–965. doi: 10.16798/j.issn.1003-0530.2020.06.018
|
[62] |
LIN Min, CHEN Qiang, and YAN Shuicheng. Network in network[EB/OL]. https://arxiv.org/abs/1312.4400#, 2013.
|
[63] |
IOFFE S and SZEGEDY C. Batch normalization: Accelerating deep network training by reducing internal covariate shift[C]. Proceedings of the 32nd International Conference on International Conference on Machine Learning, Lille, France, 2015: 448–456.
|
[64] |
李悦, 马晓川, 王磊, 等. 非高斯环境下的深度学习脉冲信号去噪与重构[J]. 应用声学, 2021, 40(1): 131–141. doi: 10.11684/j.issn.1000-310X.2021.01.016LI Yue, MA Xiaochuan, WANG Lei, et al. Using deep learning to de-noise and reconstruct pulse signals in non-Gaussian environment[J]. Journal of Applied Acoustics, 2021, 40(1): 131–141. doi: 10.11684/j.issn.1000-310X.2021.01.016
|
[65] |
KE Xiaoquan, YUAN Fei, and CHENG En. Integrated optimization of underwater acoustic ship-radiated noise recognition based on two-dimensional feature fusion[J]. Applied Acoustics, 2020, 159: 107057. doi: 10.1016/j.apacoust.2019.107057
|
[66] |
WU Zonghan, PAN Shirui, CHEN Fengwen, et al. A comprehensive survey on graph neural networks[J]. IEEE Transactions on Neural Networks and Learning Systems, 2021, 32(1): 4–24. doi: 10.1109/TNNLS.2020.2978386
|
[67] |
FEDUS W, ZOPH B, and SHAZEER N. Switch transformers: Scaling to trillion parameter models with simple and efficient sparsity[J]. The Journal of Machine Learning Research, 2023, 23(1): 120.
|