高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于联合动态稀疏表示的开集距离像目标识别方法

刘盛启 张会强 滕书华 瞿爽 吴中杰

刘盛启, 张会强, 滕书华, 瞿爽, 吴中杰. 基于联合动态稀疏表示的开集距离像目标识别方法[J]. 电子与信息学报, 2023, 45(11): 4101-4109. doi: 10.11999/JEIT221284
引用本文: 刘盛启, 张会强, 滕书华, 瞿爽, 吴中杰. 基于联合动态稀疏表示的开集距离像目标识别方法[J]. 电子与信息学报, 2023, 45(11): 4101-4109. doi: 10.11999/JEIT221284
LIU Shengqi, ZHANG Huiqiang, TENG Shuhua, QU Shuang, WU Zhongjie. Open-set HRRP Target Recognition Method Based on Joint Dynamic Sparse Representation[J]. Journal of Electronics & Information Technology, 2023, 45(11): 4101-4109. doi: 10.11999/JEIT221284
Citation: LIU Shengqi, ZHANG Huiqiang, TENG Shuhua, QU Shuang, WU Zhongjie. Open-set HRRP Target Recognition Method Based on Joint Dynamic Sparse Representation[J]. Journal of Electronics & Information Technology, 2023, 45(11): 4101-4109. doi: 10.11999/JEIT221284

基于联合动态稀疏表示的开集距离像目标识别方法

doi: 10.11999/JEIT221284
基金项目: 国家自然科学基金(62001486, 62201587),湖南省自然科学基金(2023JJ0185),湖南省教育厅科学研究重点项目(22A0640)
详细信息
    作者简介:

    刘盛启:男,副研究员,研究方向为雷达目标识别与跟踪

    张会强:男,博士,研究方向为雷达信号处理、自动目标识别

    滕书华:男,副教授,研究方向为雷达信号处理

    瞿爽:男,硕士,研究方向为雷达信号处理

    吴中杰:男,讲师,研究方向为认知雷达、雷达目标特性与识别等

    通讯作者:

    刘盛启  SQLiu@nudt.edu.cn

  • 中图分类号: TN959.1+7

Open-set HRRP Target Recognition Method Based on Joint Dynamic Sparse Representation

Funds: The National Natural Science Foundation of China (62001486, 62201587), Hunan Provincial Natural Science Foundation Project (2023JJ0185), The Key Scientific Research Project of Hunan Provincial Department of Education (22A0640)
  • 摘要: 针对开集条件下多视高分辨距离像(HRRP)目标识别问题,提出了一种基于联合动态稀疏表示(JDSR)的开集识别方法。该方法利用JDSR求解多视HRRP在过完备字典上的重构误差,采用极值理论(EVT)对匹配和非匹配类别的重构误差拖尾进行建模,将开集识别问题转化为假设检验问题求解。识别时利用重构误差确定候选类,根据尾部分布的置信度获得匹配类与非匹配类得分,并将两者的加权和作为类别判据最终确定库外目标或候选类。该方法能够有效利用多视观测来自相同目标的先验信息提高开集条件下的HRRP识别性能,并且对多视数据不同的获取场景具有良好的适应性。利用从MSTAR反演生成的HRRP数据对算法进行了测试,结果表明所提方法的性能优于主流开集识别方法。
  • 图  1  JDSR-OSR算法流程图

    图  2  部分拖尾分布示意图

    图  3  库内样本及库外样本重构误差对比

    图  4  SAR反演HRRP数据流程图

    图  5  不同开放程度下的实验结果(Situation-Ⅰ)

    图  6  不同开放程度下的实验结果(Situation-Ⅱ)

    图  7  两场景实验结果对比

    算法1 重构误差拟合及参数估计流程
     1. 输入:训练阶段重构误差 ${\boldsymbol{R}} = \left[ {{R_1},{R_2},\cdots,{R_c}} \right]$
     2. 匹配类重构误差 ${\boldsymbol{R}}_c^m = {\boldsymbol{R}}\left( {:,c} \right)$,非匹配类重构误差: ${\boldsymbol{R}}_c^{nm} = \displaystyle\sum\nolimits_{i:i \ne c} {R\left( {:,i} \right)} $
     3. 对重构误差排序: ${{\boldsymbol{R}}_c} = {\left[ {{r_{c1}},{r_{c2}}, \cdots ,{r_{c{N_c}}}} \right]^{\rm{T}}},{r_{c1}} \le {r_{c2}} \le \cdots \le {r_{c{N_c}}}$
     4. 选取匹配类重构误差右拖尾 $ {\boldsymbol{\rho}} _c^m = \left[ {r_{c\left( {{N_c}\rho } \right)}^m,r_{c\left( {{N_c}\rho + 1} \right)}^m, \cdots ,r_{c{N_c}}^m} \right] $,非匹配类重构误差左拖尾 $ {\boldsymbol{\rho}} _c^{nm} = \left[ {r_{c1}^{nm},r_{c2}^{nm}, \cdots ,r_{c\left( {{N_c}\rho } \right)}^{nm}} \right] $
     5. 选取匹配类门限值 $t_c^m = r_{c({N_c}\rho - 1)}^m$,非匹配类门限值 $t_c^{nm} = r_{c({N_c}\rho + 1)}^{nm}$
     6. 匹配类溢额值 $ {\boldsymbol{X}}_c^m = \left[ {r_{c\left( {{N_c}\rho } \right)}^m - t_c^m,r_{c\left( {{N_c}\rho + 1} \right)}^m - t_c^m, \cdots ,r_{c{N_c}}^m - t_c^m} \right] $,非匹配类溢额值
      $ {\boldsymbol{X}}_c^{nm} = - \left[ {r_{c1}^{nm} - t_c^{nm},r_{c2}^{nm} - t_c^{nm}, \cdots ,r_{c\left( {{N_c}\rho } \right)}^{nm} - t_c^{nm}} \right] $
     7. 估计极值参数 $\lg L\left( {{\sigma ^m},{\gamma ^m}} \right) = - {N_c}\lg \sigma - \left( {\dfrac{1}{\gamma } + 1} \right)\displaystyle\sum\nolimits_{i = 1}^{{N_c}} {\lg \left( {1 + \gamma \frac{{X_c^m}}{\sigma }} \right)} $,
      $\lg L\left( {{\sigma ^{nm}},{\gamma ^{nm}}} \right) = - {N_c}\lg \sigma - \left( {\dfrac{1}{\gamma } + 1} \right)\displaystyle\sum\nolimits_{i = 1}^{{N_c}} {\lg \left( {1 + \gamma \frac{{X_c^{nm}}}{\sigma }} \right)} $
     8. 输出参数 ${\hat \sigma ^m},{\hat \gamma ^m},{\hat \sigma ^{nm}},{\hat \gamma ^{nm}}$
    下载: 导出CSV
    算法2 JDSR-OSR训练算法
     1 输入:训练样本 $ {{\boldsymbol{Y}}_{{\rm{tr}}}} = [{{\boldsymbol{Y}}_1},{{\boldsymbol{Y}}_2}, \cdots ,{{\boldsymbol{Y}}_C}] $,标签集
      ${L_{{\rm{tr}}}} = [{L_1},{L_2}, \cdots ,{L_C}]$,字典矩阵 ${\boldsymbol{D}}$,稀疏度K,多视数目n
     尾部大小 $\rho $
     2 训练样本划分为多视数据 ${{\boldsymbol{Y}}_{11}} = \left[ {{{\boldsymbol{y}}_{11}},{{\boldsymbol{y}}_{12}}, \cdots ,{{\boldsymbol{y}}_{1(1 + n)}}} \right] $,
      ${L_{11}} = \left[ {{l_1},{l_{12}}, \cdots ,{l_{1(1 + n)}}} \right]$, ···,
      $ {{\boldsymbol{Y}}_{ci}} = \left[ {{{\boldsymbol{y}}_{ci}},{{\boldsymbol{y}}_{c(i + 1)}}, \cdots ,{{\boldsymbol{y}}_{c(i + n)}}} \right] $,
      Lci=[lci, lc(i +1), ··· , lc(i +n)]
     3 计算重构误差 $ R \leftarrow {\rm{JDSR}}\left( {{\boldsymbol{Y}},l,{\boldsymbol{D}},K} \right) $
     4 匹配类重构误差: $R_c^m = R\left( {:,c} \right)$;非匹配类重构误差:
      $R_c^{nm} = \displaystyle\sum\limits_{i:i \ne c} {R\left( {:,i} \right)} $
     5 拟合尾部极值参数: ${\text{GPDfit}}\left( {R_c^m,\rho } \right) \to \hat \sigma _c^m,\hat \gamma _c^m$
      ${\text{GPDfit}}\left( { - R_c^{nm},\rho } \right) \to \hat \sigma _c^{nm},\hat \gamma _c^{nm}$
     6 输出极值参数 $\hat \sigma _c^m,\hat \gamma _c^m,\hat \sigma _c^{nm},\hat \gamma _c^{nm}$
    下载: 导出CSV
    算法3 JDSR-OSR分类方法
     1 输入:多视数据 ${{\boldsymbol{Y}}_j}$, ${\boldsymbol{D}}$, $k$, ${\hat \sigma ^m},{\hat \gamma ^m},{\hat \sigma ^{nm}},{\hat \gamma ^{nm}}$, ${\delta _g}$, $w$
     2 计算重构误差 $R \leftarrow {\text{JDSR}}\left( {{{\boldsymbol{Y}}_j},{\boldsymbol{D}},K} \right)$
     3 得到候选类别 ${c^ * } = \mathop {\arg \min }\limits_i {R_i}$
     4  ${r^m} = R_{{c^ * }}^m,{r^{nm}} = \displaystyle\sum\limits_{i \ne {c^ * }} {{R_i}} $
     5  $\begin{gathered} {{\rm{score}}_m} = G\left( {{r^m};{{\hat \sigma }^m}\left( {{c^ * }} \right),{{\hat \gamma }^m}\left( {{c^ * }} \right)} \right), \\ {{\rm{score}}_{nm}} = G\left( {{r^{nm}};{{\hat \sigma }^{nm}}\left( {{c^ * }} \right),{{\hat \gamma }^{nm}}\left( {{c^ * }} \right)} \right) \\ \end{gathered} $
     6  ${\rm{score}} = {{\rm{score}}_m} + w \cdot {{\rm{score}}_{nm}}$
    $\begin{gathered} \begin{array}{*{20}{c}} {{\text{if}}}&{{\rm{score}} > {\delta _g}} \end{array} \\ \begin{array}{*{20}{c}} {}&{{{\boldsymbol{Y}}_j} \in {\text{openset}}} \end{array} \\ \quad {\text{else}} \\ \begin{array}{*{20}{c}} {}&{{\text{Clas}}{{\text{s}}_{{{\boldsymbol{Y}}_j}}} = {c^ * }} \end{array} \\ \end{gathered} $
     7 输出 ${{\boldsymbol{Y}}_j}$类别
    下载: 导出CSV

    表  1  Situation-Ⅰ JDSR-OSR的混淆矩阵

    类别 BMP2 BTR70 T72 未知新类
    BMP2 0.712 0.088 0.060 0.140
    BTR70 0.066 0.827 0.025 0.082
    T72 0.030 0.007 0.825 0.138
    BTR60 0.048 0.124 0.027 0.801
    2S1 0.045 0.086 0.131 0.738
    BRDM2 0.134 0.076 0.038 0.752
    D7 0.011 0.010 0.080 0.899
    T62 0.003 0 0.121 0.876
    ZIL 0 0 0.051 0.949
    ZSU 0 0 0.096 0.904
    下载: 导出CSV

    表  2  Situation-Ⅱ JDSR-OSR的混淆矩阵

    类别 BMP2 BTR70 T72 未知新类
    BMP2 0.735 0.056 0.019 0.190
    BTR70 0.020 0.910 0.022 0.048
    T72 0.005 0 0.960 0.035
    BTR60 0.019 0.042 0.039 0.900
    2S1 0.016 0.056 0.045 0.883
    BRDM2 0.066 0.018 0 0.916
    D7 0 0.002 0.247 0.751
    T62 0 0 0.403 0.597
    ZIL 0 0 0.177 0.823
    ZSU 0 0 0.318 0.682
    下载: 导出CSV

    表  3  JDSR-OSR与其他方法平均识别率的对比结果

    方法 Situation-Ⅰ Situation-Ⅱ
    JDSR-OSR 0.832 0.816
    SR-OSR 0.809 0.732
    W-SVM 0.786 0.687
    1-vs-set 0.794 0.709
    KLD-RPA 0.813 0.752
    下载: 导出CSV

    表  4  不同测试类别下的算法运行时间对比(s)

    测试类别数 SR-OSR JDSR-OSR
    4 16.585 15.637
    5 18.875 18.400
    6 19.765 20.937
    7 22.520 23.584
    8 24.150 26.731
    9 25.640 29.815
    10 30.015 032.076
    下载: 导出CSV
  • [1] 付哲泉, 李尚生, 李相平, 等. 基于高效可扩展改进残差结构神经网络的舰船目标识别技术[J]. 电子与信息学报, 2020, 42(12): 3005–3012. doi: 10.11999/JEIT190913

    FU Zhequan, LI Shangsheng, LI Xiangping, et al. Ship target recognition based on highly efficient scalable improved residual structure neural network[J]. Journal of Electronics & Information Technology, 2020, 42(12): 3005–3012. doi: 10.11999/JEIT190913
    [2] 贺丰收, 何友, 刘准钆, 等. 卷积神经网络在雷达自动目标识别中的研究进展[J]. 电子与信息学报, 2020, 42(1): 119–131. doi: 10.11999/JEIT180899

    HE Fengshou, HE You, LIU Zhunga, et al. Research and development on applications of convolutional neural networks of radar automatic target recognition[J]. Journal of Electronics & Information Technology, 2020, 42(1): 119–131. doi: 10.11999/JEIT180899
    [3] GÖRNITZ N, LIMA L A, MÜLLER K R, et al. Support vector data descriptions and k-means clustering: One class?[J]. IEEE Transactions on Neural Networks and Learning Systems, 2018, 29(9): 3994–4006. doi: 10.1109/TNNLS.2017.2737941
    [4] PÉREZ G J, SANTIBÁÑEZ M, VALDOVINOS R M, et al. On-line learning with reject option[J]. IEEE Latin America Transactions, 2018, 16(1): 279–286. doi: 10.1109/TLA.2018.8291485
    [5] GEIFMAN Y and EL-YANIV R. Selective classification for deep neural networks[C]. Proceedings of the 31st International Conference on Neural Information Processing Systems, Long Beach, USA, 2017: 4885–4894.
    [6] SCHEIRER W J, DE REZENDE ROCHA A, SAPKOTA A, et al. Toward open set recognition[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2013, 35(7): 1757–1772. doi: 10.1109/TPAMI.2012.256
    [7] SCHEIRER W J, JAIN L P, and BOULT T E. Probability models for open set recognition[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2014, 36(11): 2317–2324. doi: 10.1109/TPAMI.2014.2321392
    [8] JAIN L P, SCHEIRER W J, and BOULT T E. Multi-class open set recognition using probability of inclusion[C]. Proceedings of the 13th European Conference on Computer Vision, Zurich, Switzerland, 2014: 393–409. doi: 10.1007/978-3-319-10578-9_26.
    [9] ZHANG He and PATEL V M. Sparse representation-based open set recognition[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(8): 1690–1696. doi: 10.1109/TPAMI.2016.2613924
    [10] BENDALE A and BOULT T. Towards open world recognition[C]. Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition, Boston, USA, 2015: 1893–1902. doi: 10.1109/CVPR.2015.7298799.
    [11] SADHUKHAN P. Can reverse nearest neighbors perceive unknowns?[J]. IEEE Access, 2020, 8: 6316–6343. doi: 10.1109/ACCESS.2019.2963471
    [12] SHU Lei, XU Hu, and LIU Bing. DOC: Deep open classification of text documents[C]. Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing, Copenhagen, Denmark, 2017: 2911–2916. doi: 10.18653/v1/D17-1314.
    [13] OZA P and PATEL V M. C2AE: Class conditioned auto-encoder for open-set recognition[C]. 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Long Beach, USA, 2019: 2302–2311. doi: 10.1109/CVPR.2019.00241.
    [14] ZENG Zhiqiang, SUN Jinping, XU Congan, et al. Unknown SAR target identification method based on feature extraction network and KLD–RPA joint discrimination[J]. Remote Sensing, 2021, 13(15): 2901. doi: 10.3390/rs13152901
    [15] RUDD E M, JAIN L P, SCHEIRER W J, et al. The extreme value machine[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2018, 40(3): 762–768. doi: 10.1109/TPAMI.2017.2707495
    [16] PAPPADÀ R, PERRONE E, DURANTE F, et al. Spin-off extreme value and Archimedean copulas for estimating the bivariate structural risk[J]. Stochastic Environmental Research and Risk Assessment, 2016, 30(1): 327–342. doi: 10.1007/s00477-015-1103-8
    [17] FALK M and STUPFLER G. An offspring of multivariate extreme value theory: The max-characteristic function[J]. Journal of Multivariate Analysis, 2017, 154: 85–95. doi: 10.1016/j.jmva.2016.10.007
    [18] 刘盛启. 基于高分辨距离像的特征提取与识别增强技术研究[D]. [博士论文], 国防科学技术大学, 2016.

    LIU Shengqi. Research on feature extraction and recognition performance enhancement algorithms based on high range resolution profile[D]. [Ph. D. dissertation], National University of Defense Technology, 2016.
    [19] AL-LABADI L and ZAREPOUR M. Two-sample Kolmogorov-Smirnov test using a Bayesian nonparametric approach[J]. Mathematical Methods of Statistics, 2017, 26(3): 212–225. doi: 10.3103/S1066530717030048
    [20] 刘振. 基于稀疏表示的图像分类若干新方法研究[D]. [博士论文], 江南大学, 2021. doi: 10.27169/d.cnki.gwqgu.2021.001957.

    LIU Zhen. Research on new methods of image classification via sparse representation[D]. [Ph. D. dissertation], Jiangnan University, 2021. doi: 10.27169/d.cnki.gwqgu.2021.001957.
    [21] 缪吴霞. SAR图像回波反演及典型目标特征提取方法研究[D]. [硕士论文], 哈尔滨工业大学, 2019. doi: 10.27061/d.cnki.ghgdu.2019.001165.

    MIAO Wuxia. Research on SAR image echo inversion and typical target featuer extraction method[D]. [Master dissertation], Harbin Institute of Technology, 2019. doi: 10.27061/d.cnki.ghgdu.2019.001165.
  • 加载中
图(7) / 表(7)
计量
  • 文章访问数:  366
  • HTML全文浏览量:  194
  • PDF下载量:  59
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-10-10
  • 修回日期:  2023-10-12
  • 网络出版日期:  2023-10-18
  • 刊出日期:  2023-11-28

目录

    /

    返回文章
    返回