高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

仓储场景中基于无线标签的三维定位方法

刘凯凯 田增山 李泽 万晓榆

刘凯凯, 田增山, 李泽, 万晓榆. 仓储场景中基于无线标签的三维定位方法[J]. 电子与信息学报, 2023, 45(12): 4218-4227. doi: 10.11999/JEIT221269
引用本文: 刘凯凯, 田增山, 李泽, 万晓榆. 仓储场景中基于无线标签的三维定位方法[J]. 电子与信息学报, 2023, 45(12): 4218-4227. doi: 10.11999/JEIT221269
LIU Kaikai, TIAN Zengshan, LI Ze, WAN Xiaoyu. 3-D Localization Method Based on Wireless Tags in Warehouse Scenarios[J]. Journal of Electronics & Information Technology, 2023, 45(12): 4218-4227. doi: 10.11999/JEIT221269
Citation: LIU Kaikai, TIAN Zengshan, LI Ze, WAN Xiaoyu. 3-D Localization Method Based on Wireless Tags in Warehouse Scenarios[J]. Journal of Electronics & Information Technology, 2023, 45(12): 4218-4227. doi: 10.11999/JEIT221269

仓储场景中基于无线标签的三维定位方法

doi: 10.11999/JEIT221269
基金项目: 重庆市教委科学技术研究项目(KJQN202100647)
详细信息
    作者简介:

    刘凯凯:男,高级工程师,博士生,研究方向为物联网、信号处理、天线传播、无线定位与感知等

    田增山:男,教授,博士生导师,研究方向为移动通信、个人通信、GPS与蜂窝网定位技术等

    李泽:男,博士,研究方向为工业物联网、自动控制、信号处理、天线传播、无线定位与感知等

    万晓榆:男,教授,博士生导师,研究方向为NGN网络、现代邮政技术、仓储物流等

    通讯作者:

    田增山 tianzs@cqupt.edu.cn

  • 中图分类号: TN92

3-D Localization Method Based on Wireless Tags in Warehouse Scenarios

Funds: The Science and Technology Research Program of Chongqing Municipal Education Commission (KJQN202100647)
  • 摘要: 仓储行业在面向智能化发展中面临因无法获取物资的室内位置信息而导致出库、入库难等问题,为实现对物资准确定位,该文提出一种基于无线标签的目标3维定位方法。设计的无线标签安置在待定位物资上,将来自发射机正交频分复用(OFDM)信号反射到具有均匀面阵(UPA)天线阵列的接收机,进行多通道的信道估计后,利用分步的稀疏恢复算法实现高维无线信道参数估计,并结合发射机、标签和接收机的空间几何位置,建立标签位置的优化问题,最后采用群智能算法搜索得到目标准确的3维位置。为验证系统,实现了标签及收发机原型,实测结果表明,目标的中值3维定位精度达到0.53 m。
  • 图  1  仓储场景中定位物资的示意图

    图  2  基于无线标签的室内目标3维定位方法

    图  3  均匀面阵的接收信号模型

    图  4  两步OMP信道参数估计流程图

    图  5  PSO算法搜索无线标签3维位置过程

    图  6  定位方法流程图

    图  7  无线标签架构与原型图

    图  8  OFDM收发系统架构

    图  9  接收机原型

    图  10  测试场景布置

    图  11  实际测试场景照片

    图  12  物资的真实位置与估计位置

    图  13  定位精度CDF图

    图  14  方位角与倾角估计精度CDF图

    图  15  标签反射路径ToF估计精度CDF图

    图  16  多标签3维定位仿真

    图  17  3标签同时反射时的初始种群

    图  18  仿真结果:定位精度CDF图

    表  1  基于无线标签定位系统的性能对比

    系统2维定位3维定位单站定位兼容现有WiFi设备
    本系统0.70 m@90%0.88 m@90%可以可以
    TagFi[9]0.62 m@80%可以可以
    RF-Echo[8]0.46 m@90%不能不能
    WiTag[7]0.92 m@50%不能不能
    下载: 导出CSV
  • [1] 房殿军. 仓储物流技术发展趋势分析[J]. 物流技术与应用, 2020, 25(6): 90–95. doi: 10.3969/j.issn.1007-1059.2020.06.009

    FANG Dianjun. Analysis of development trend of warehousing logistics technology[J]. Logistics &Material Handling, 2020, 25(6): 90–95. doi: 10.3969/j.issn.1007-1059.2020.06.009
    [2] 钱志鸿, 田春生, 郭银景, 等. 智能网联交通系统的关键技术与发展[J]. 电子与信息学报, 2020, 42(1): 2–19. doi: 10.11999/JEIT190787

    QIAN Zhihong, TIAN Chunsheng, GUO Yinjing, et al. The key technology and development of intelligent and connected transportation system[J]. Journal of Electronics &Information Technology, 2020, 42(1): 2–19. doi: 10.11999/JEIT190787
    [3] BOTTIGLIERO S, MILANESIO D, SACCANI M, et al. A low-cost indoor real-time locating system based on TDOA estimation of UWB pulse sequences[J]. IEEE Transactions on Instrumentation and Measurement, 2021, 70: 5502211. doi: 10.1109/TIM.2021.3069486
    [4] LUO Zhihong, ZHANG Qiping, MA Yunfei, et al. 3D backscatter localization for fine-grained robotics[C]. The 16th USENIX Conference on Networked Systems Design and Implementation, Boston, USA, 2019: 765–781.
    [5] WU Haibing, TAO Bo, GONG Zeyu, et al. A fast UHF RFID localization method using unwrapped phase-position model[J]. IEEE Transactions on Automation Science and Engineering, 2019, 16(4): 1698–1707. doi: 10.1109/TASE.2019.2895104
    [6] KOTARU M, JOSHI K, BHARADIA D, et al. SpotFi: Decimeter level localization using WiFi[C]. The 2015 ACM Conference on Special Interest Group on Data Communication, London, UK, 2015: 269–282.
    [7] KOTARU M, ZHANG Pengyu, and KATTI S. Localizing low-power backscatter tags using commodity WiFi[C]. The 13th International Conference on emerging Networking Experiments and Technologies, Incheon, Korea, 2017: 251–262.
    [8] CHUO Lixuan, LUO Zhihong, SYLVESTER D, et al. RF-Echo: A non-line-of-sight indoor localization system using a low-power active RF reflector ASIC tag[C]. The 23rd Annual International Conference on Mobile Computing and Networking, Utah: USA, 2017: 222–234.
    [9] SOLTANAGHAEI E, DONGARE A, PRABHAKARA A, et al. TagFi: Locating ultra-low power WiFi tags using unmodified WiFi infrastructure[J]. Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies, 2021, 5(1): 34. doi: 10.1145/3448082
    [10] TROPP J A and GILBERT A C. Signal recovery from random measurements via orthogonal matching pursuit[J]. IEEE Transactions on Information Theory, 2007, 53(12): 4655–4666. doi: 10.1109/TIT.2007.909108
    [11] LUO Jiaqing and SHIN K G. Detecting misplaced RFID tags on static shelved items[C]. The 17th Annual International Conference on Mobile Systems, Applications, and Services, Seoul, Korea, 2019: 378–390.
    [12] ABEDI A, DEHBASHI F, MAZAHERI M H, et al. WiTAG: Seamless WiFi backscatter communication[C]. The Annual Conference of the ACM Special Interest Group on Data Communication on the Applications, Technologies, Architectures, and Protocols for Computer Communication, New York, USA, 2020: 240–252.
    [13] CHEN Zhe, ZHU Guorong, WANG Sulei, et al. M3: Multipath assisted Wi-Fi localization with a single access point[J]. IEEE Transactions on Mobile Computing, 2021, 20(2): 588–602. doi: 10.1109/TMC.2019.2950315
    [14] SAHOO S K and MAKUR A. Signal recovery from random measurements via extended orthogonal matching pursuit[J]. IEEE Transactions on Signal Processing, 2015, 63(10): 2572–2581. doi: 10.1109/TSP.2015.2413384
    [15] LIU Kaikai, TIAN Zengshan, LI Ze, et al. HiLoc: Sub-meter level indoor localization using a single access point with distributed antennas in wireless sensor networks[J]. IEEE Sensors Journal, 2022, 22(6): 4869–4881. doi: 10.1109/JSEN.2020.3048903
    [16] XIE Yaxiong, XIONG Jie, LI Mo, et al. mD-Track: Leveraging multi-dimensionality for passive indoor Wi-Fi tracking[C]. The 25th Annual International Conference on Mobile Computing and Networking, Los Cabos, Mexico, 2019: 8.
    [17] KAZAZ T, JANSSEN G J M, ROMME J, et al. Delay estimation for ranging and localization using multiband channel state information[J]. IEEE Transactions on Wireless Communications, 2022, 21(4): 2591–2607. doi: 10.1109/TWC.2021.3113771
    [18] JAIN M, CHOI J I, KIM T, et al. Practical, real-time, full duplex wireless[C]. The 17th Annual International Conference on Mobile Computing and Networking, Nevada, USA, 2011: 301–312.
    [19] ANDERSON C R, KRISHNAMOORTHY S, RANSON C G, et al. Antenna isolation, wideband multipath propagation measurements, and interference mitigation for on-frequency repeaters[C]. IEEE SoutheastCon, 2004 Proceedings, USA, 2004: 110–114.
    [20] ZHANG Pengyu, JOSEPHSON C, BHARADIA D, et al. FreeRider: Backscatter communication using commodity radios[C]. The 13th International Conference on Emerging Networking Experiments and Technologies, Incheon, Korea, 2017: 389–401.
  • 加载中
图(18) / 表(1)
计量
  • 文章访问数:  448
  • HTML全文浏览量:  201
  • PDF下载量:  144
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-10-08
  • 修回日期:  2023-03-03
  • 网络出版日期:  2023-03-13
  • 刊出日期:  2023-12-26

目录

    /

    返回文章
    返回