高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

面向存算一体架构中Tanh激活函数的绝对值电路设计

顾晓峰 管其冬 虞致国

顾晓峰, 管其冬, 虞致国. 面向存算一体架构中Tanh激活函数的绝对值电路设计[J]. 电子与信息学报, 2023, 45(9): 3350-3358. doi: 10.11999/JEIT221257
引用本文: 顾晓峰, 管其冬, 虞致国. 面向存算一体架构中Tanh激活函数的绝对值电路设计[J]. 电子与信息学报, 2023, 45(9): 3350-3358. doi: 10.11999/JEIT221257
GU Xiaofeng, GUAN Qidong, YU Zhiguo. Absolute Value Circuit for Tanh Activation Function in Computing in Memory[J]. Journal of Electronics & Information Technology, 2023, 45(9): 3350-3358. doi: 10.11999/JEIT221257
Citation: GU Xiaofeng, GUAN Qidong, YU Zhiguo. Absolute Value Circuit for Tanh Activation Function in Computing in Memory[J]. Journal of Electronics & Information Technology, 2023, 45(9): 3350-3358. doi: 10.11999/JEIT221257

面向存算一体架构中Tanh激活函数的绝对值电路设计

doi: 10.11999/JEIT221257
基金项目: 长三角科技创新共同体联合攻关项目(2022CSJGG0400),中央高校基本科研业务费专项资金(JUSRP51510),江苏省重点研发计划(BE2019003-2)
详细信息
    作者简介:

    顾晓峰:男,博士、教授,研究方向为半导体材料、器件和电子系统设计和应用

    管其冬:男,硕士生,研究方向为模拟集成电路设计

    虞致国:男,博士、副教授,研究方向为AI芯片、高性能处理器和低功耗集成电路设计

    通讯作者:

    虞致国 yuzhiguo@jiangnan.edu.cn

  • 中图分类号: TN432

Absolute Value Circuit for Tanh Activation Function in Computing in Memory

Funds: The Joint Project of Yangtze River Delta Community of Sci-Tech Innovation (2022CSJGG0400), The Fundamental Research Funds for the Central Universities (JUSRP51510), The Key R&D Program of Jiangsu Province (BE2019003-2)
  • 摘要: 基于存算一体(CIM)架构的激活函数模拟实现方式使得神经网络变得更加接近非线性模型,针对其中Tanh函数负值难处理的问题,该文提出一种高速、高精度绝对值运算电路。该电路将输入电压经过比较器结果判断选择是否输出,利用反相比例取反电路控制负压输入并转换为正压通过开关输出,实现了离散输出功能的绝对值运算处理。与传统利用二极管全波整流绝对值电路相比,该电路有效避免了二极管难集成的问题,且速度快、功耗低、整体面积小。基于55 nm CMOS工艺进行设计,结果表明,在50 ns工作时钟周期下,经过绝对值电路转化后的输出电压与输入电压误差控制在1%以内,比较器的输出延时为5 ns,零点区域放大电压误差小于400 µV。在1.2 V电源电压下,功耗为670 µW,版图面积为4 447 µm2
  • 图  1  CIM整体架构

    图  2  Buffer驱动电路

    图  3  比较器整体电路架构

    图  4  反相比例取反电路图

    图  5  产生互补时钟的开关电路

    图  6  Buffer驱动电路建立时间

    图  7  比较器瞬态仿真

    图  8  反相比例取反电路功能实现

    图  9  传输门开关在不同PVT条件下的输出曲线

    图  10  绝对值零点放大

    图  11  台阶周期电压仿真曲线

    图  12  正弦周期电压仿真曲线

    图  13  蒙特卡罗失调分析

    图  14  理想Tanh函数与该文CIM架构输出值拟合成Tanh函数对比

    图  15  绝对值电路整体版图

    表  1  不同PVT条件下误差精度对比

    PVTBuffer驱动电路比较器反相比例取反电路绝对值整体电路
    建立时间(ns)输出延时(ns)最小误差(mV)最大误差(mV)输出误差(mV)
    ss(125°C)47.0010.000.361.041.12
    tt(25°C)32.005.000.051.010.87
    ff(–40°C)26.003.000.021.020.69
    下载: 导出CSV

    表  2  绝对值电路性能总结以及与其他绝对值电路性能对比

    指标名称文献[20]文献[21]本文
    设计工艺(µm)0.5000.3500.055
    电源电压(V)1.51.01.2
    信号频率(Hz)100k33k20M
    输出精度(%)2.52<1
    版图面积(µm2)72 0944 447
    下载: 导出CSV
  • [1] SZE V, CHEN Y H, EMER J, et al. Hardware for machine learning: Challenges and opportunities[C]. 2017 IEEE Custom Integrated Circuits Conference (CICC), Austin, USA, 2017: 1–8.
    [2] KIM H, CHUNG J, SHIN K, et al. Live demonstration: A neural processor for AI acceleration[C]. 2021 IEEE International Symposium on Circuits and Systems (ISCAS), Daegu, Korea, 2021: 1.
    [3] ZHOU Yushan and LI Wenxin. Discovering of game AIs’ characters using a neural network based AI imitator for AI clustering[C]. 2020 IEEE Conference on Games (CoG), Osaka, Japan, 2020: 198–205.
    [4] 顾晓峰, 刘彦航, 虞致国, 等. 一种面向基于闪存的脉冲卷积神经网络的模拟神经元电路[J]. 电子与信息学报, 2023, 45(1): 116–124. doi: 10.11999/JEIT211249

    GU Xiaofeng, LIU Yanhang, YU Zhiguo, et al. An analog neuron circuit for spiking convolutional neural networks based on flash array[J]. Journal of Electronics &Information Technology, 2023, 45(1): 116–124. doi: 10.11999/JEIT211249
    [5] MOONS B and VERHELST M. A 0.3–2.6 TOPS/W precision-scalable processor for real-time large-scale ConvNets[C]. 2016 IEEE Symposium on VLSI Circuits (VLSI-Circuits), Honolulu, USA, 2016: 1–2.
    [6] CHIU C C, SAINATH T N, WU Yonghui, et al. State-of-the-art speech recognition with sequence-to-sequence models[C]. 2018 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Calgary, Canada, 2018: 4774–4778.
    [7] TANG Tianqi, XIA Lixue, LI Boxun, et al. Binary convolutional neural network on RRAM[C]. 2017 22nd Asia and South Pacific Design Automation Conference (ASP-DAC), Chiba, Japan, 2017: 782–787.
    [8] ZHANG Jintao, WANG Zhuo, and VERMA N. In-memory computation of a machine-learning classifier in a standard 6T SRAM array[J]. IEEE Journal of Solid-State Circuits, 2017, 52(4): 915–924. doi: 10.1109/JSSC.2016.2642198
    [9] BISWAS A and CHANDRAKASAN A P. Conv-RAM: An energy-efficient SRAM with embedded convolution computation for low-power CNN-based machine learning applications[C]. 2018 IEEE International Solid - State Circuits Conference-(ISSCC), San Francisco, USA, 2018: 488–490.
    [10] XUE Chengxin, CHEN Weihao, LIU J Y, et al. 24.1 A 1Mb multibit ReRAM computing-in-memory macro with 14.6ns parallel MAC computing time for CNN based AI edge processors[C]. 2019 IEEE International Solid- State Circuits Conference (ISSCC), San Francisco, USA, 2019: 388–390.
    [11] WU T F, LI Haitong, HUANG Pingchen, et al. Brain-inspired computing exploiting carbon nanotube FETs and resistive RAM: Hyperdimensional computing case study[C]. 2018 IEEE International Solid - State Circuits Conference (ISSCC), San Francisco, USA, 2019: 492–494.
    [12] GUO Xinjie, BAYAT F M, BAVANDPOUR M, et al. Fast, energy-efficient, robust, and reproducible mixed-signal neuromorphic classifier based on embedded NOR flash memory technology[C]. 2017 IEEE International Electron Devices Meeting (IEDM), San Francisco, USA, 2017: 6.5. 1–6.5. 4.
    [13] YAN Bonan, YANG Qing, CHEN Weihao, et al. RRAM-based spiking nonvolatile computing-in-memory processing engine with precision-configurable in situ nonlinear activation[C]. 2019 Symposium on VLSI Technology, Kyoto, Japan, 2019: T86–T87.
    [14] VEIRE L V, DE BOOM C, and DE BIE T. Sigmoidal NMFD: Convolutional NMF with saturating activations for drum mixture decomposition[J]. Electronics, 2021, 10(3): 284. doi: 10.3390/electronics10030284
    [15] SHAMSI J, AMIRSOLEIMANI A, MIRZAKUCHAKI S, et al. Hyperbolic tangent passive resistive-type neuron[C]. 2015 IEEE International Symposium on Circuits and Systems (ISCAS), Lisbon, Portugal, 2015: 581–584.
    [16] SHAKIBA F M and ZHOU Mengchu. Novel analog implementation of a hyperbolic tangent neuron in artificial neural networks[J]. IEEE Transactions on Industrial Electronics, 2021, 68(11): 10856–10867. doi: 10.1109/TIE.2020.3034856
    [17] LIU Feng, ZHANG Bowen, CHEN Gang, et al. A novel configurable high-precision and low-cost circuit design of sigmoid and tanh activation function[C]. 2021 IEEE International Conference on Integrated Circuits, Technologies and Applications (ICTA), Zhuhai, China, 2021: 222–223.
    [18] HAENSCH W, GOKMEN T, and PURI R. The next generation of deep learning hardware: Analog computing[J]. Proceedings of the IEEE, 2019, 107(1): 108–122. doi: 10.1109/JPROC.2018.2871057
    [19] JOUBERT A, BELHADJ B, TEMAM O, et al. Hardware spiking neurons design: Analog or digital[C]. The 2012 International Joint Conference on Neural Networks (IJCNN), Brisbane, Australia, 2012: 1–5.
    [20] KUMNGERN M. Absolute value circuit for biological signal processing applications[C]. 2013 4th International Conference on Intelligent Systems, Modelling and Simulation, Bangkok, Thailand, 2013: 601–604.
    [21] IRANMANESH S, RAIKOS G, ZHOU Jiang, et al. CMOS implementation of a low power absolute value comparator circuit[C]. 2016 14th IEEE International New Circuits and Systems Conference (NEWCAS), Vancouver, Canada, 2016: 1–4.
  • 加载中
图(15) / 表(2)
计量
  • 文章访问数:  388
  • HTML全文浏览量:  290
  • PDF下载量:  84
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-09-28
  • 修回日期:  2023-02-10
  • 网络出版日期:  2023-02-16
  • 刊出日期:  2023-09-27

目录

    /

    返回文章
    返回