Passive Internet of Things: Background, Concept, Challenges and Progress
-
摘要: 近年来,随着物联网(IoT)部署范围不断扩大,数以千亿计的智能设备将接入物联网,对网络接入能力、能量供应、成本等提出了极大挑战,无源物联网呼之欲出。该文梳理了无源物联网相关概念并给出其定义,首次系统研究了无源物联网面临的能量密度低、转化效率低、后向散射通信距离有限、能量信息同时传输兼顾难等4大挑战,详细分析了问题原因并对研究进展进行综述:针对能量密度低挑战,从波束成形、能量收集天线设计、智能反射表面3个方面综述;针对能量转换效率低挑战,从接收机架构优化、波形设计、阻抗匹配优化、整流器优化4个方面综述;针对后向散射通信距离有限挑战,从新的调制方式、频移型后向散射新机制、MIMO增强、新的信道编码机制、新的信号检测方法、智能反射表面增强以及半有源模式7个方面综述;针对能量信息同时传输兼顾难问题,从能量信息同时传输架构优化、能量信息兼容信道编码2个方面综述。针对每个优化方向,对比分析了各类方法的优劣并指出了未来研究方向。Abstract: In the past decades, the scope of Internet of Things (IoT) is expanded continuously. With hundreds of billions of smart devices connect to IoT, huge challenges are arisen from several aspects such as device cost, connectivity capability, and power supplies. Fortunately, the new paradigm - passive IoT is coming which is one of the effective solutions for these challenges. Some related concepts are analyzed and the definition of passive IoT is proposed. For the first time, the four challenges faced by passive IoT, such as low energy density, low conversion efficiency, limited distance of backscatter communication, and difficulty in transmission of power and information simultaneous, are studied. The problems are analyzed in deeply and the research progress are surveyed. For the challenge of low energy density, the research progress is reviewed from three aspects: beamforming, antenna design for energy harvesting, and intelligent reflecting surface. For the challenge of low energy conversion efficiency, from receiver architecture optimization, waveform design, impedance matching, rectifier optimization. For the challenge of limited distance of backscatter communication, the research progress is reviewed from seven aspects: new modulation scheme, new frequency-shifted backscattering scheme, MIMO, new channel coding scheme, new signal detection method, intelligent reflecting surface enhancing, and semi-active mode. Considering the difficulty in transmission of power and information simultaneous, the research progress is reviewed from two aspects: optimization of the receiver architecture and the energy information compatible signal coding scheme. For each aspect, the advantages and disadvantages of various methods are analyzed and the future research directions are pointed out.
-
表 1 缩写表
缩写 英文内容 中文内容 缩写 英文内容 中文内容 IoT Internet of Things 物联网 NB-IoT Narrow Band Internet of Things 窄带物联网 LoRa Long Range Radio 远距离无线电 LPWAN Low Power Wide Area Network 低功耗广域网 RFEH Radio Frequency Energy Harvesting 射频能量收集 RFID Radio Frequency Identification 射频识别 BC Backscatter Communication 后向散射通信 SWIPT Simultaneous Wireless Information and Power Transfer 能量信号同时传输 IRS Intelligent Reflecting Surface 智能超表面 WET Wireless Energy Transmission 无线能量传输 WIT Wireless Information Transmission 无线信号传输 ASK Amplitude-shift Keying 幅移键控调制 FSK Frequency-shift Keying 频移键控调制 PSK Phase-shift Keying 相移键控调制 BER Bit Error Ratio 误码率 MIMO Multiple Input Multiple Output 多进多出 MISO Multiple Input Single Output 多进单出 POW Power Optimized Waveforms 最大功率波形 OFDM Orthogonal Frequency Division Multiplexing 正交频分复用 DLI Direct Link Interference 直接传输干扰 OOK On-off Keying 开关调制 BPSK Binary Phase Shift Keying 二进制相移键控 QAM Quadrature Amplitude Modulation 正交振幅调制 MSK Minimum Shift Keying 最小频移键控 MOS Metal-Oxide-Semiconductor Field-Effect Transistor 金属-氧化物半导体场效应管 CMOS Complementary Metal Oxide Semiconductor 互补金属氧化物半导体 -
[1] 中国移动, 中国电信, 中国联通, 等. 5G-Advanced网络技术演进白皮书2.0(2022)——面向万物智联新时代[R]. 2022.China Mobile, China Telecom, China Unicom, et al. 5G -advanced technology evolution from a network perspecyive 2.0(2022)[R]. 2022. [2] GU Xiaoqiang, HEMOUR S, and WU Ke. Far-field wireless power harvesting: Nonlinear modeling, rectenna design, and emerging applications[J]. Proceedings of the IEEE, 2022, 110(1): 56–73. doi: 10.1109/JPROC.2021.3127930 [3] LU Xiao, WANG Ping, NIYATO D, et al. Wireless networks with RF energy harvesting: A contemporary survey[J]. IEEE Communications Surveys & Tutorials, 2015, 17(2): 757–789. doi: 10.1109/COMST.2014.2368999 [4] RAMALINGAM L, MARIAPPAN S, PARAMESWARAN P, et al. The advancement of radio frequency energy harvesters (RFEHs) as a revolutionary approach for solving energy crisis in wireless communication devices: A review[J]. IEEE Access, 2021, 9: 106107–106139. doi: 10.1109/ACCESS.2021.3098895 [5] VAN HUYNH N, HOANG D T, LU Xiao, et al. Ambient backscatter communications: A contemporary survey[J]. IEEE Communications Surveys & Tutorials, 2018, 20(4): 2889–2922. doi: 10.1109/COMST.2018.2841964 [6] MURATKAR T S, BHURANE A, and KOTHARI A. Battery-less internet of things-A survey[J]. Computer Networks, 2020, 180: 107385. doi: 10.1016/j.comnet.2020.107385 [7] WU Weiqi, WANG Xingfu, HAWBANI A, et al. A survey on ambient backscatter communications: Principles, systems, applications, and challenges[J]. Computer Networks, 2022, 216: 109235. doi: 10.1016/J.COMNET.2022.109235 [8] CHOI K W, HWANG S I, AZIZ A A, et al. Simultaneous Wireless Information and Power Transfer (SWIPT) for internet of things: Novel receiver design and experimental validation[J]. IEEE Internet of Things Journal, 2020, 7(4): 2996–3012. doi: 10.1109/JIOT.2020.2964302 [9] PERERA T D P, JAYAKODY D N K, SHARMA S K, et al. Simultaneous wireless information and power transfer (SWIPT): Recent advances and future challenges[J]. IEEE Communications Surveys & Tutorials, 2018, 20(1): 264–302. doi: 10.1109/COMST.2017.2783901 [10] CLERCKX B, HUANG Kaibin, VARSHNEY L R, et al. Wireless power transfer for future networks: Signal processing, machine learning, computing, and sensing[J]. IEEE Journal of Selected Topics in Signal Processing, 2021, 15(5): 1060–1094. doi: 10.1109/JSTSP.2021.3098478 [11] KIM J, CLERCKX B, and MITCHESON P D. Signal and system design for wireless power transfer: Prototype, experiment and validation[J]. IEEE Transactions on Wireless Communications, 2020, 19(11): 7453–7469. doi: 10.1109/TWC.2020.3011606 [12] CLERCKX B, ZHANG Rui, SCHOBER R, et al. Fundamentals of wireless information and power transfer: From RF energy harvester models to signal and system designs[J]. IEEE Journal on Selected Areas in Communications, 2019, 37(1): 4–33. doi: 10.1109/JSAC.2018.2872615 [13] GU Xiaoqiang, GRAUWIN L, DOUSSET D, et al. Dynamic ambient RF energy density measurements of montreal for battery-free IoT sensor network planning[J]. IEEE Internet of Things Journal, 2021, 8(17): 13209–13221. doi: 10.1109/JIOT.2021.3065683 [14] ANDRENKO A S, LIN Xianyang, and ZENG Miaowang. Outdoor RF spectral survey: A roadmap for ambient RF energy harvesting[C]. 2015 IEEE Region 10 Conference, Macao, China, 2015: 1–4. [15] ALSABA Y, RAHIM S K A, and LEOW C Y. Beamforming in wireless energy harvesting communications systems: A survey[J]. IEEE Communications Surveys & Tutorials, 2018, 20(2): 1329–1360. doi: 10.1109/COMST.2018.2797886 [16] ZHANG Rui and HO C K. MIMO broadcasting for simultaneous wireless information and power transfer[J]. IEEE Transactions on Wireless Communications, 2013, 12(5): 1989–2001. doi: 10.1109/TWC.2013.031813.120224 [17] TIMOTHEOU S, KRIKIDIS I, ZHENG Gan, et al. Beamforming for MISO interference channels with QoS and RF energy transfer[J]. IEEE Transactions on Wireless Communications, 2014, 13(5): 2646–2658. doi: 10.1109/TWC.2014.032514.131199 [18] CANTOS L and KIM Y H. Max-min fair energy beamforming for wireless powered communication with non-linear energy harvesting[J]. IEEE Access, 2019, 7: 69516–69523. doi: 10.1109/ACCESS.2019.2918649 [19] LI Ang and MASOUROS C. Energy-efficient SWIPT: From fully digital to hybrid analog–digital beamforming[J]. IEEE Transactions on Vehicular Technology, 2018, 67(4): 3390–3405. doi: 10.1109/TVT.2017.2782775 [20] WAGIH M, WEDDELL A S, and BEEBY S. Rectennas for radio-frequency energy harvesting and wireless power transfer: A review of antenna design [Antenna Applications Corner][J]. IEEE Antennas and Propagation Magazine, 2020, 62(5): 95–107. doi: 10.1109/MAP.2020.3012872 [21] SHI Yanyan, FAN Yue, LI Yan, et al. An efficient broadband slotted rectenna for wireless power transfer at LTE band[J]. IEEE Transactions on Antennas and Propagation, 2019, 67(2): 814–822. doi: 10.1109/TAP.2018.2882632 [22] PALAZZI V, DEL PRETE M, and FANTUZZI M. Scavenging for energy: A rectenna design for wireless energy harvesting in UHF mobile telephony bands[J]. IEEE Microwave Magazine, 2017, 18(1): 91–99. doi: 10.1109/MMM.2016.2616189 [23] HAROUNI Z, CIRIO L, OSMAN L, et al. A dual circularly polarized 2.45-GHz rectenna for wireless power transmission[J]. IEEE Antennas and Wireless Propagation Letters, 2011, 10: 306–309. doi: 10.1109/lawp.2011.2141973 [24] DENG Wenhui, WANG Shuihong, YANG Boru, et al. A multibeam ambient electromagnetic energy harvester with full azimuthal coverage[J]. IEEE Internet of Things Journal, 2022, 9(11): 8925–8934. doi: 10.1109/JIOT.2021.3119417 [25] VANDELLE E, BUI D H N, VUONG T P, et al. Harvesting ambient RF energy efficiently with optimal angular coverage[J]. IEEE Transactions on Antennas and Propagation, 2019, 67(3): 1862–1873. doi: 10.1109/TAP.2018.2888957 [26] SUN Hucheng and WEN Geyi. A new rectenna with all-polarization-receiving capability for wireless power transmission[J]. IEEE Antennas and Wireless Propagation Letters, 2016, 15: 814–817. doi: 10.1109/LAWP.2015.2476345 [27] SONG Chaoyun, HUANG Yi, CARTER P, et al. A novel six-band dual CP rectenna using improved impedance matching technique for ambient RF energy harvesting[J]. IEEE Transactions on Antennas and Propagation, 2016, 64(7): 3160–3171. doi: 10.1109/TAP.2016.2565697 [28] QUEVEDO-TERUEL O, LIAO Qingbi, CHEN Qiao, et al. Geodesic lens antennas for 5G and beyond[J]. IEEE Communications Magazine, 2022, 60(1): 40–45. doi: 10.1109/MCOM.001.2100545 [29] WU Qingqing and ZHANG Rui. Weighted sum power maximization for intelligent reflecting surface aided SWIPT[J]. IEEE Wireless Communications Letters, 2020, 9(5): 586–590. doi: 10.1109/LWC.2019.2961656 [30] PAN Cunhua, REN Hong, WANG Kezhi, et al. Intelligent reflecting surface aided MIMO broadcasting for simultaneous wireless information and power transfer[J]. IEEE Journal on Selected Areas in Communications, 2020, 38(8): 1719–1734. doi: 10.1109/JSAC.2020.3000802 [31] GALAPPATHTHIGE D L and BADUGE G A. Exploiting distributed IRSs for enabling SWIPT[J]. IEEE Wireless Communications Letters, 2022, 11(4): 673–677. doi: 10.1109/LWC.2021.3134630 [32] JIA Xiaolun, ZHOU Xiangyun, NIYATO D, et al. Intelligent reflecting surface-assisted bistatic backscatter networks: Joint beamforming and reflection design[J]. IEEE Transactions on Green Communications and Networking, 2022, 6(2): 799–814. doi: 10.1109/TGCN.2021.3127190 [33] XU Xinyue, LIANG Yingchang, YANG Gang, et al. Reconfigurable intelligent surface empowered symbiotic radio over broadcasting signals[C]. Proceedings of 2020 IEEE Global Communications Conference, Taipei, China, 2020: 1–6. [34] SHEN Chao, LI Weichiang, and CHANG T H. Wireless information and energy transfer in multi-antenna interference channel[J]. IEEE Transactions on Signal Processing, 2014, 62(23): 6249–6264. doi: 10.1109/TSP.2014.2355781 [35] SHEN Shanpu and CLERCKX B. Beamforming optimization for MIMO wireless power transfer with nonlinear energy harvesting: RF combining versus DC combining[J]. IEEE Transactions on Wireless Communications, 2021, 20(1): 199–213. doi: 10.1109/TWC.2020.3024064 [36] TROTTER M S, GRIFFIN J D, and DURGIN G D. Power-optimized waveforms for improving the range and reliability of RFID systems[C]. Proceedings of 2009 IEEE International Conference on RFID, Orlando, USA, 2009: 80–87. [37] BOAVENTURA A S and CARVALHO N B. Maximizing DC power in energy harvesting circuits using multisine excitation[C]. Proceedings of 2011 IEEE MTT-S International Microwave Symposium, Baltimore, USA, 2011: 1–4. [38] CLERCKX B and BAYGUZINA E. Waveform design for wireless power transfer[J]. IEEE Transactions on Signal Processing, 2016, 64(23): 6313–6328. doi: 10.1109/TSP.2016.2601284 [39] HUANG Yang and CLERCKX B. Waveform design for wireless power transfer with limited feedback[J]. IEEE Transactions on Wireless Communications, 2018, 17(1): 415–429. doi: 10.1109/TWC.2017.2767578 [40] ABEYWICKRAMA S, ZHANG Rui, and YUEN C. Refined nonlinear rectenna modeling and optimal waveform design for multi-user multi-antenna wireless power transfer[J]. IEEE Journal of Selected Topics in Signal Processing, 2021, 15(5): 1198–1210. doi: 10.1109/JSTSP.2021.3086988 [41] GAUTAM S, KUMAR S, CHATZINOTAS S, et al. Experimental evaluation of RF waveform designs for wireless power transfer using software defined radio[J]. IEEE Access, 2021, 9: 132609–132622. doi: 10.1109/ACCESS.2021.3115048 [42] VASILEV I, PLICANIC V, and LAU B K. Impact of antenna design on MIMO performance for compact terminals with adaptive impedance matching[J]. IEEE Transactions on Antennas and Propagation, 2016, 64(4): 1454–1465. doi: 10.1109/TAP.2016.2521885 [43] MOHAN A and MONDAL S. An impedance matching strategy for micro-scale RF energy harvesting systems[J]. IEEE Transactions on Circuits and Systems II:Express Briefs, 2021, 68(4): 1458–1462. doi: 10.1109/TCSII.2020.3036850 [44] SONG Chaoyun, HUANG Yi, ZHOU Jiafeng, et al. Matching network elimination in broadband rectennas for high-efficiency wireless power transfer and energy harvesting[J]. IEEE Transactions on Industrial Electronics, 2017, 64(5): 3950–3961. doi: 10.1109/TIE.2016.2645505 [45] SONG Chaoyun, HUANG Yi, CARTER P, et al. Novel compact and broadband frequency-selectable rectennas for a wide input-power and load impedance range[J]. IEEE Transactions on Antennas and Propagation, 2018, 66(7): 3306–3316. doi: 10.1109/TAP.2018.2826568 [46] LI Songting, LI Cong, CAI Lei, et al. A −20 dBm passive UHF RFID Tag IC with MTP NVM in 0.13-μm standard CMOS process[J]. IEEE Transactions on Circuits and Systems I:Regular Papers, 2020, 67(12): 4566–4579. doi: 10.1109/TCSI.2020.3007952 [47] OUDA M H, KHALIL W, and SALAMA K N. Self-biased differential rectifier with enhanced dynamic range for wireless powering[J]. IEEE Transactions on Circuits and Systems II:Express Briefs, 2017, 64(5): 515–519. doi: 10.1109/TCSII.2016.2591263 [48] ALMANSOURI A S, OUDA M H, and SALAMA K N. A CMOS RF-to-DC power converter with 86% efficiency and-19.2-dBm sensitivity[J]. IEEE Transactions on Microwave Theory and Techniques, 2018, 66(5): 2409–2415. doi: 10.1109/TMTT.2017.2785251 [49] ALMANSOURI A S, KOSEL J, and SALAMA K N. A dual-mode nested rectifier for ambient wireless powering in CMOS technology[J]. IEEE Transactions on Microwave Theory and Techniques, 2020, 68(5): 1754–1762. doi: 10.1109/TMTT.2020.2970913 [50] KHAN S R and CHOI G S. High-efficiency CMOS rectifier with minimized leakage and threshold cancellation features for low power bio-implants[J]. Microelectronics Journal, 2017, 66: 67–75. doi: 10.1016/j.mejo.2017.06.002 [51] NOGHABAEI S M, RADIN R L, SAVARIA Y, et al. A high-sensitivity wide input-power-range ultra-low-power RF energy harvester for IoT applications[J]. IEEE Transactions on Circuits and Systems I:Regular Papers, 2022, 69(1): 440–451. doi: 10.1109/TCSI.2021.3099011 [52] KIM D, INGRAM M A, and SMITH W W. Measurements of small-scale fading and path loss for long range RF tags[J]. IEEE Transactions on Antennas and Propagation, 2003, 51(8): 1740–1749. doi: 10.1109/TAP.2003.814752 [53] YANG Gang, LIANG Yingchang, ZHANG Rui, et al. Modulation in the air: Backscatter communication over ambient OFDM carrier[J]. IEEE Transactions on Communications, 2018, 66(3): 1219–1233. doi: 10.1109/TCOMM.2017.2772261 [54] YAO Chaochao, LIU Yang, WEI Xusheng, et al. Backscatter technologies and the future of internet of things: Challenges and opportunities[J]. Intelligent and Converged Networks, 2020, 1(2): 170–180. doi: 10.23919/ICN.2020.0013 [55] KIMIONIS J, BLETSAS A, and SAHALOS J N. Increased range bistatic scatter radio[J]. IEEE Transactions on Communications, 2014, 62(3): 1091–1104. doi: 10.1109/TCOMM.2014.020314.130559 [56] QIAN Jing, GAO Feifei, and WANG Gongpu. Signal detection of ambient backscatter system with differential modulation[C]. Proceedings of 2016 IEEE International Conference on Acoustics, Speech and Signal Processing, Shanghai, China, 2016: 3831–3835. [57] FASARAKIS-HILLIARD N, ALEVIZOS P N, and BLETSAS A. Coherent detection and channel coding for bistatic scatter radio sensor networking[J]. IEEE Transactions on Communications, 2015, 63(5): 1798–1810. doi: 10.1109/TCOMM.2015.2412546 [58] WANG P H P, ZHANG Chi, YANG Hongsen, et al. A low-power backscatter modulation system communicating across tens of meters with standards-compliant Wi-Fi transceivers[J]. IEEE Journal of Solid-State Circuits, 2020, 55(11): 2959–2969. doi: 10.1109/JSSC.2020.3023956 [59] WANG Xiyu, YIĞITLER H, DUAN Ruifeng, et al. Coherent multiantenna receiver for BPSK-modulated ambient backscatter tags[J]. IEEE Internet of Things Journal, 2022, 9(2): 1197–1211. doi: 10.1109/JIOT.2021.3079333 [60] NAGARAJ S and YAQO R. A frequency modulation technique for SNR improvement in backscatter radios[J]. IEEE Communications Letters, 2021, 25(12): 3956–3959. doi: 10.1109/LCOMM.2021.3117735 [61] VARSHNEY A, PÉREZ-PENICHET C, ROHNER C, et al. LoRea: A backscatter architecture that achieves a long communication range[C]. Proceedings of the 15th ACM Conference on Embedded Network Sensor Systems, Delft, Netherlands, 2017: 50. [62] IYER V, TALLA V, KELLOGG B, et al. Inter-technology backscatter: Towards internet connectivity for implanted devices[J]. GetMobile:Mobile Computing and Communications, 2017, 21(3): 35–38. doi: 10.1145/3161587.3161597 [63] TALLA V, HESSAR M, KELLOGG B, et al. LoRa backscatter: Enabling the vision of ubiquitous connectivity[J]. Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies, 2017, 1(3): 1–24. doi: 10.1145/3130970 [64] JIANG Jinyan, XU Zhenqiang, DANG Fan, et al. Long-range ambient LoRa backscatter with parallel decoding[C]. Proceedings of the 27th Annual International Conference on Mobile Computing and Networking, New Orleans, USA, 2021: 684–696. [65] PARKS A N, LIU Angli, GOLLAKOTA S, et al. Turbocharging ambient backscatter communication[J]. ACM SIGCOMM Computer Communication Review, 2014, 44(4): 619–630. doi: 10.1145/2740070.2626312 [66] GRIFFIN J D and DURGIN G D. Gains for RF tags using multiple antennas[J]. IEEE Transactions on Antennas and Propagation, 2008, 56(2): 563–570. doi: 10.1109/TAP.2007.915423 [67] GUO Huayan, ZHANG Qianqian, XIAO Sa, et al. Exploiting multiple antennas for cognitive ambient backscatter communication[J]. IEEE Internet of Things Journal, 2019, 6(1): 765–775. doi: 10.1109/JIOT.2018.2856633 [68] HE Chen, WANG Z J, MIAO Chunyan, et al. Block-level unitary query: Enabling orthogonal-like space-time code with query diversity for MIMO Backscatter RFID[J]. IEEE Transactions on Wireless Communications, 2016, 15(3): 1937–1949. doi: 10.1109/TWC.2015.2497240 [69] HE Chen, WANG Z J, and LEUNG V C M. Unitary query for the M×L×N MIMO backscatter RFID channel[J]. IEEE Transactions on Wireless Communications, 2015, 14(5): 2613–2625. doi: 10.1109/TWC.2015.2390220 [70] ALHASSOUN M and DURGIN G D. Spatial fading in retrodirective channels: An experimental study[J]. IEEE Transactions on Wireless Communications, 2021, 20(9): 5812–5820. doi: 10.1109/TWC.2021.3070384 [71] REZAEI F, TELLAMBURA C, and HERATH S. Large-scale wireless-powered networks with backscatter communications—a comprehensive survey[J]. IEEE Open Journal of the Communications Society, 2020, 1: 1100–1130. doi: 10.1109/OJCOMS.2020.3012466 [72] ALEVIZOS P N, FASARAKIS-HILLIARD N, TOUNTAS K, et al. Channel coding for increased range bistatic backscatter radio: Experimental results[C]. 2014 IEEE RFID Technology and Applications Conference, Tampere, Finland, 2014: 38–43. [73] HE Chen, LUAN Huixu, LI Xiaoya, et al. A simple, high-performance space–time code for MIMO backscatter communications[J]. IEEE Internet of Things Journal, 2020, 7(4): 3586–3591. doi: 10.1109/JIOT.2020.2973048 [74] DASKALAKIS S N, ASSIMONIS S D, KAMPIANAKIS E, et al. Soil moisture scatter radio networking with low power[J]. IEEE Transactions on Microwave Theory and Techniques, 2016, 64(7): 2338–2346. doi: 10.1109/TMTT.2016.2572677 [75] ZHU Yihua, LI Ertao, and CHI Kaikai. Encoding scheme to reduce energy consumption of delivering data in Radio frequency powered battery-free wireless sensor networks[J]. IEEE Transactions on Vehicular Technology, 2018, 67(4): 3085–3097. doi: 10.1109/TVT.2017.2776170 [76] SONG Guochao, YANG Hang, WANG Wei, et al. Reliable wide-area backscatter via channel polarization[C]. 2020 IEEE Conference on Computer Communications, Toronto, Canada, 2020: 1300–1308. [77] BOYER C and ROY S. Space time coding for backscatter RFID[J]. IEEE Transactions on Wireless Communications, 2013, 12(5): 2272–2280. doi: 10.1109/TWC.2013.031313.120917 [78] HE Chen, CHEN Shangdong, LUAN Huixu, et al. Monostatic MIMO backscatter communications[J]. IEEE Journal on Selected Areas in Communications, 2020, 38(8): 1896–1909. doi: 10.1109/JSAC.2020.3000823 [79] GOUDELI E, PSOMAS C, and KRIKIDIS I. Spatial-modulation-based techniques for backscatter communication systems[J]. IEEE Internet of Things Journal, 2020, 7(10): 10623–10634. doi: 10.1109/JIOT.2020.3005832 [80] LUAN Huixu, XIE Xie, HAN Luyang, et al. A better than alamouti OSTBC for MIMO backscatter communications[J]. IEEE Transactions on Wireless Communications, 2022, 21(2): 1117–1131. doi: 10.1109/TWC.2021.3102111 [81] LIU V, PARKS A, TALLA V, et al. Ambient backscatter: Wireless communication out of thin air[J]. ACM SIGCOMM Computer Communication Review, 2013, 43(4): 39–50. doi: 10.1145/2534169.2486015 [82] QIAN Jing, GAO Feifei, WANG Gongpu, et al. Semi-coherent detection and performance analysis for ambient backscatter system[J]. IEEE Transactions on Communications, 2017, 65(12): 5266–5279. doi: 10.1109/TCOMM.2017.2738001 [83] QIAN Jing, GAO Feifei, WANG Gongpu, et al. Noncoherent detections for ambient backscatter system[J]. IEEE Transactions on Wireless Communications, 2017, 16(3): 1412–1422. doi: 10.1109/TWC.2016.2635654 [84] GURUACHARYA S, LU Xiao, and HOSSAIN E. Optimal non-coherent detector for ambient backscatter communication system[J]. IEEE Transactions on Vehicular Technology, 2020, 69(12): 16197–16201. doi: 10.1109/TVT.2020.3034317 [85] LIU Chang, WEI Zhiqiang, NG D W K, et al. Deep transfer learning for signal detection in ambient backscatter communications[J]. IEEE Transactions on Wireless Communications, 2021, 20(3): 1624–1638. doi: 10.1109/TWC.2020.3034895 [86] MA Shuo, WANG Gongpu, WANG Yanwen, et al. Signal ratio detection and approximate performance analysis for ambient backscatter communication systems with multiple receiving antennas[J]. Mobile Networks and Applications, 2018, 23(6): 1478–1486. doi: 10.1007/s11036-017-0980-0 [87] CHEN Chen, WANG Gongpu, DIAMANTOULAKIS P D, et al. Signal detection and optimal antenna selection for ambient backscatter communications with multi-antenna tags[J]. IEEE Transactions on Communications, 2020, 68(1): 466–479. doi: 10.1109/TCOMM.2019.2946799 [88] CHEN Chen, WANG Gongpu, GUAN Hao, et al. Transceiver design and signal detection in backscatter communication systems with multiple-antenna tags[J]. IEEE Transactions on Wireless Communications, 2020, 19(5): 3273–3288. doi: 10.1109/TWC.2020.2971990 [89] LIU Yuan, REN Pinyi, DU Qinghe, et al. Performance enhancement for differential energy signal detection of ambient backscatter communications[J]. Transactions on Emerging Telecommunications Technologies, 2022, 33(7): e4483. doi: 10.1002/ett.4483 [90] NEMATI M, DING Jie, and CHOI J. Short-range ambient backscatter communication using reconfigurable intelligent surfaces[C]. 2020 IEEE Wireless Communications and Networking Conference, Seoul, Korea (South), 2020: 1–6. doi: 10.1109/WCNC45663.2020.9120813. [91] ZHAO Wenjing, WANG Gongpu, ATAPATTU S, et al. Performance analysis of large intelligent surface aided backscatter communication systems[J]. IEEE Wireless Communications Letters, 2020, 9(7): 962–966. doi: 10.1109/lwc. 2020.2976934. [92] ABEYWICKRAMA S, YOU Changsheng, ZHANG Rui, et al. Channel estimation for intelligent reflecting surface assisted backscatter communication[J]. IEEE Wireless Communications Letters, 2021, 10(11): 2519–2523. doi: 10.1109/LWC.2021.3106165 [93] FARA R, PHAN-HUY D T, RATAJCZAK P, et al. Reconfigurable intelligent surface-assisted ambient backscatter communications-experimental assessment[C]. 2021 IEEE International Conference on Communications Workshops, Montreal, Canada, 2021: 1–7. [94] CHEN Yunfei. Performance of ambient backscatter systems using reconfigurable intelligent surface[J]. IEEE Communications Letters, 2021, 25(8): 2536–2539. doi: 10.1109/LCOMM.2021.3083110 [95] LIANG Yingchang, ZHANG Qianqian, WANG Jun, et al. Backscatter communication assisted by reconfigurable intelligent surfaces[J]. Proceedings of the IEEE, 2022, 110(9): 1339–1357. doi: 10.1109/JPROC.2022.3169622 [96] KANTAREDDY S N R, MATHEWS I, BHATTACHARYYA R, et al. Long range battery-less PV-powered RFID tag sensors[J]. IEEE Internet of Things Journal, 2019, 6(4): 6989–6996. doi: 10.1109/JIOT.2019.2913403 [97] LU Yingxian, BASSET P, and LAHEURTE J M. Performance evaluation of a long-range RFID tag powered by a vibration energy harvester[J]. IEEE Antennas and Wireless Propagation Letters, 2017, 16: 1832–1835. doi: 10.1109/lawp.2017.2682419 [98] AMATO F, TORUN H M, and DURGIN G D. RFID backscattering in long-range scenarios[J]. IEEE Transactions on Wireless Communications, 2018, 17(4): 2718–2725. doi: 10.1109/TWC.2018.2801803 [99] HU Jie, YANG Kun, WEN Guangjun, et al. Integrated data and energy communication network: A comprehensive survey[J]. IEEE Communications Surveys & Tutorials, 2018, 20(4): 3169–3219. doi: 10.1109/COMST.2018.2860778 [100] GROVER P and SAHAI A. Shannon meets Tesla: Wireless information and power transfer[C]. 2010 IEEE International Symposium on Information Theory, Austin, USA, 2010: 2363–2367. doi: 10.1109/ISIT.2010.5513714. [101] ZHOU Xun, ZHANG Rui, and HO C K. Wireless information and power transfer: Architecture design and rate-energy tradeoff[J]. IEEE Transactions on Communications, 2013, 61(11): 4754–4767. doi: 10.1109/TCOMM.2013.13.120855 [102] KANG J M, KIM I M, and KIM D I. Wireless information and power transfer: Rate-energy tradeoff for nonlinear energy harvesting[J]. IEEE Transactions on Wireless Communications, 2018, 17(3): 1966–1981. doi: 10.1109/TWC.2017.2787569 [103] FANG Zhaoxi, YUAN Xiaojun, and WANG Xin. Distributed energy beamforming for simultaneous wireless information and power transfer in the two-way relay channel[J]. IEEE Signal Processing Letters, 2015, 22(6): 656–660. doi: 10.1109/LSP.2014.2365718 [104] JANG H H, CHOI K W, and KIM D I. Novel frequency-splitting SWIPT for overcoming amplifier nonlinearity[J]. IEEE Wireless Communications Letters, 2020, 9(6): 826–829. doi: 10.1109/LWC.2020.2971983 [105] CLERCKX B, KIM J, CHOI K W, et al. Foundations of wireless information and power transfer: Theory, prototypes, and experiments[J]. Proceedings of the IEEE, 2022, 110(1): 8–30. doi: 10.1109/JPROC.2021.3132369 [106] PARK J J, MOON J H, LEE K Y, et al. Transmitter-oriented dual-mode SWIPT with deep-learning-based adaptive mode switching for IoT sensor networks[J]. IEEE Internet of Things Journal, 2020, 7(9): 8979–8992. doi: 10.1109/JIOT.2020.2999892 [107] TANDON A, MOTANI M, and VARSHNEY L R. Constant subblock composition codes for simultaneous energy and information transfer[C]. The 11th Annual IEEE International Conference on Sensing, Communication, and Networking Workshops, Singapore, 2014: 45–50. [108] TANDON A, MOTANI M, and VARSHNEY L R. Real-time simultaneous energy and information transfer[C]. 2015 IEEE International Symposium on Information Theory, Hong Kong, China, 2015: 1124–1128. [109] TANDON A, MOTANI M, and VARSHNEY L R. Subblock-constrained codes for real-time simultaneous energy and information transfer[J]. IEEE Transactions on Information Theory, 2016, 62(7): 4212–4227. doi: 10.1109/TIT.2016.2559504 [110] IM C, LEE J W, and LEE C. A multi-tone amplitude modulation scheme for wireless information and power transfer[J]. IEEE Transactions on Vehicular Technology, 2020, 69(1): 1147–1151. doi: 10.1109/TVT.2019.2954860 [111] HU Jie, LI Mengyuan, YANG Kun, et al. Unary coding controlled simultaneous wireless information and power transfer[J]. IEEE Transactions on Wireless Communications, 2020, 19(1): 637–649. doi: 10.1109/TWC.2019.2947491 [112] ZHAO Yizhe, HU Jie, YANG Kun, et al. Unary coding design for simultaneous wireless information and power transfer with practical M-QAM[J]. IEEE Transactions on Wireless Communications, 2021, 20(5): 2850–2862. doi: 10.1109/TWC.2020.3044722