高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

面向CT图像新冠肺炎识别的密集重参轻量化Transformer模型

周涛 叶鑫宇 刘凤珍 陆惠玲 周敬策 杜玉虎

周涛, 叶鑫宇, 刘凤珍, 陆惠玲, 周敬策, 杜玉虎. 面向CT图像新冠肺炎识别的密集重参轻量化Transformer模型[J]. 电子与信息学报, 2023, 45(10): 3520-3528. doi: 10.11999/JEIT221180
引用本文: 周涛, 叶鑫宇, 刘凤珍, 陆惠玲, 周敬策, 杜玉虎. 面向CT图像新冠肺炎识别的密集重参轻量化Transformer模型[J]. 电子与信息学报, 2023, 45(10): 3520-3528. doi: 10.11999/JEIT221180
ZHOU Tao, YE Xinyu, LIU Fengzhen, LU Huiling, ZHOU Jingce, DU Yuhu. Dense Heavy Parameter Lightweight Transformer Model for CT Image Recognition of COVID-19[J]. Journal of Electronics & Information Technology, 2023, 45(10): 3520-3528. doi: 10.11999/JEIT221180
Citation: ZHOU Tao, YE Xinyu, LIU Fengzhen, LU Huiling, ZHOU Jingce, DU Yuhu. Dense Heavy Parameter Lightweight Transformer Model for CT Image Recognition of COVID-19[J]. Journal of Electronics & Information Technology, 2023, 45(10): 3520-3528. doi: 10.11999/JEIT221180

面向CT图像新冠肺炎识别的密集重参轻量化Transformer模型

doi: 10.11999/JEIT221180
基金项目: 国家自然科学基金(62062003),宁夏自然科学基金(2022AAC03149),宁夏自治区重点研发计划(2020BEB04022),北方民族大学2022年研究生创新项目(YCX22198)
详细信息
    作者简介:

    周涛:男,教授,博士生导师,研究方向为医学图像处理、计算机辅助诊断、模式识别

    叶鑫宇:男,硕士生,研究方向为医学图像处理、计算机辅助诊断

    刘凤珍:女,硕士生,研究方向为医学图像处理、计算机辅助诊断

    陆惠玲:女,副教授,研究方向为医学图像分析处理、机器学习

    杜玉虎:男,硕士生,研究方向为医学图像处理、计算机辅助诊断

    通讯作者:

    叶鑫宇 3303626778@qq.com

  • 中图分类号: R563.1; TP391.41

Dense Heavy Parameter Lightweight Transformer Model for CT Image Recognition of COVID-19

Funds: The National Natural Science Foundation of China (62062003), The National Natural Science Foundation of Ningxia Autonomous Region (2022AAC03149), The Key Research and Development Projects of Ningxia Autonomous Region (2020BEB04022), 2022 graduate innovation Project of North Minzu University for Nationalities (YCX22198)
  • 摘要: 新冠(COVID-19)肺炎严重威胁人类健康,基于深度学习的计算机辅助诊断方法能有效提高新冠肺炎的诊断效率。但是深度学习模型结构复杂、参数量和计算量大,在保持模型性能的前提下提高网络轻量化的程度具有重要研究意义,因此,该文提出一种面向CT图像新冠肺炎识别的密集重参轻量化Transformer模型(DRLTransformer)。首先,为提高模型的轻量化程度,构造了重参密集块和层次化Transformer,在保持模型精度的同时提高计算速度,降低模型参数量;然后,为充分提取新冠肺炎病灶的全局与局部信息,设计层次化Transformer增强全局注意力对局部特征相关性的关注程度,其中采用分组提取全局特征,在不同组之间进行融合获得多层次信息,并且进行信息融合,进一步提高组内和组间特征的交互能力,此外对所有全局特征进行聚合,实现深浅层特征深度融合。最后,在新冠肺炎CT数据集中进行对比实验,结果表明该模型参数量和计算量分别为1.47 M和81.232 M,相比密集网络(DenseNet)参数量降低29倍、计算量降低23倍,该模型对新冠肺炎计算机辅助诊断具有积极的意义,为深度学习模型轻量化提供了新思路。
  • 图  1  DRLTransformer模型结构图

    图  2  $ 1 \times 1 $重参卷积

    图  3  $ 3 \times 3 $重参卷积

    图  4  邻域Transformer

    图  5  层次化Transformer单元

    图  6  信息融合

    图  7  不同模型在新冠肺炎CT数据集上的热力图

    图  8  不同模型在新冠肺炎CT数据集上的ROC曲线和AUC值

    图  9  不同模型在新冠肺炎CT数据集上的PR曲线

    表  1  在新冠肺炎CT数据集上的消融实验结果对比

    模型实验替换添加参数量(M)计算量训练显存(G)测试显存(G)训练时间(s)准确率精确率召回率F1分数AUC值
    DenseNetDenseNet12142.621.816G7.098.1511 7330.945 70.944 70.947 70.946 20.945 7
    重参1重参密集块1.0770.3816.753.287 3980.959 70.954 40.966 20.960 20.959 6
    重参+邻域2邻域13.43643.1956.673.358 9910.968 90.963 50.975 40.969 40.968 9
    重参
    +层次化
    Transfomer
    3512层次化4.55225.7316.343.168 3450.972 10.966 60.978 50.972 50.972 0
    4256层次化1.28M76.263M5.97G3.14G8 2870.967 40.963 40.972 30.967 80.967 4
    5512信息融合4.55225.7316.373.198 3850.978 30.975 50.981 50.978 50.978 3
    6256信息融合1.2876.2635.973.178 3120.976 70.975 50.978 50.976 90.976 7
    7256聚合1.4781.2326.083.177 5580.981 40.978 60.984 60.981 60.981 4
    下载: 导出CSV

    表  2  不同模型在新冠肺炎CT数据集上的具体结果

    对比模型模型参数量(M)模型计算量训练时间(s)准确率精确率召回率F1分数AUC值
    ResNet101[3]162.147.832G12 9840.944 10.952 90.935 40.944 10.944 3
    DenseNet121[15]42.621.816G11 7330.945 70.944 70.947 70.946 20.945 7
    EfficientNetb4[5]66.9634.125M11 6470.958 10.951 50.966 20.958 80.958 1
    RegNetx032[16]58.353.176G11 3890.959 60.962 80.956 90.959 90.959 7
    MobileNet[9]12.262.322G10 5330.936 40.927 70.947 70.937 60.936 3
    GhostNet[2]14.89147.5117 8460.951 90.945 40.960 00.952 70.951 9
    EdgeNeXt-B[11]113.291.851G12 1140.962 80.957 40.969 20.963 30.962 7
    SwinTransformer[17]330.6615.126G17 9360.962 80.963 10.963 10.963 10.962 8
    ReLKNet31B[18]300.7615.513G19 3460.965 90.969 00.963 10.966 00.965 9
    ConvNeXt-B[16]333.9815.359G16 7050.968 90.972 10.966 20.969 10.969 1
    Conformer-B[17]510.0614.486G17 4280.972 10.969 40.975 40.972 40.972 1
    DRLTransformer1.47M81.232M7 5580.981 40.978 60.984 60.981 60.981 4
    下载: 导出CSV

    表  3  公开对比实验结果

    模型准确率精确率召回率F1
    ResNet101[3]0.86000.84000.88000.8500
    InceptionV3[10]0.95000.95000.94000.9400
    EfficientNetB7[5]0.96000.96000.96000.9600
    Meta-CNN[19]0.99000.99000.99000.9900
    DRLTransformer0.99500.99400.99200.9910
    下载: 导出CSV

    表  4  公开对比实验结果

    模型准确率精确率参数量
    VGG[6]0.92730.9535131.4M
    DenseNet169[15]0.93390.957928.0M
    ViT[11]0.95180.958385.6M
    LLT[20]0.97800.986627.5M
    DRLTransformer0.99360.99231.5M
    下载: 导出CSV

    表  5  公开对比实验结果

    模型敏感度特异度准确率AUC值
    MobileNetV2[9]0.97060.87250.92160.9820
    Xception[21]0.98041.00000.99020.9940
    DRLTransformer0.99670.99430.99140.9952
    下载: 导出CSV
  • [1] KAYA A T and AKMAN B. Mediastinal lymph node enlargement in COVID-19: Relationships with mortality and CT findings[J]. Heart & Lung, 2022, 54: 19–26. doi: 10.1016/j.hrtlng.2022.03.006
    [2] 周涛, 刘赟璨, 陆惠玲, 等. ResNet及其在医学图像处理领域的应用: 研究进展与挑战[J]. 电子与信息学报, 2022, 44(1): 149–167. doi: 10.11999/JEIT210914

    ZHOU Tao, LIU Yuncan, LU Huiling, et al. ResNet and its application to medical image processing: Research progress and challenges[J]. Journal of Electronics &Information Technology, 2022, 44(1): 149–167. doi: 10.11999/JEIT210914
    [3] SONG Ying, ZHENG Shuangjia, LI Liang, et al. Deep learning enables accurate diagnosis of novel coronavirus (COVID-19) with CT images[J]. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2021, 18(6): 2775–2780. doi: 10.1109/TCBB.2021.3065361
    [4] YE Qinghao, GAO Yuan, DING Weiping, et al. Robust weakly supervised learning for COVID-19 recognition using multi-center CT images[J]. Applied Soft Computing, 2022, 116: 108291. doi: 10.1016/j.asoc.2021.108291
    [5] RAHHAL M, BAZI Y, JOMAA R M, et al. Deep learning approach for COVID-19 detection in computed tomography images[J]. Computers, Materials & Continua, 2021, 67(2): 2093–2110. doi: 10.32604/CMC.2021.014956
    [6] KONG Lingzhi and CHENG Jinyong. Classification and detection of COVID-19 X-Ray images based on DenseNet and VGG16 feature fusion[J]. Biomedical Signal Processing and Control, 2022, 77: 103772. doi: 10.1016/j.bspc.2022.103772
    [7] GARG A, SALEHI S, LA ROCCA M, et al. Efficient and visualizable convolutional neural networks for COVID-19 classification using Chest CT[J]. Expert Systems with Applications, 2022, 195: 116540. doi: 10.1016/j.eswa.2022.116540
    [8] MONTALBO F J P. Diagnosing Covid-19 chest x-rays with a lightweight truncated DenseNet with partial layer freezing and feature fusion[J]. Biomedical Signal Processing and Control, 2021, 68: 102583. doi: 10.1016/j.bspc.2021.102583
    [9] ASIF S, ZHAO Ming, TANG Fengxiao, et al. A deep learning-based framework for detecting COVID-19 patients using chest X-rays[J]. Multimedia Systems, 2022, 28(4): 1495–1513. doi: 10.1007/s00530-022-00917-7
    [10] CHAKRABORTY M, DHAVALE S V, and INGOLE J. Corona-Nidaan: Lightweight deep convolutional neural network for chest X-Ray based COVID-19 infection detection[J]. Applied Intelligence, 2021, 51(5): 3026–3043. doi: 10.1007/s10489-020-01978-9
    [11] DEHKORDI H A, KASHIANI H, IMANI A A H, et al. Lightweight local transformer for COVID-19 detection using chest CT scans[C]. The 2021 11th International Conference on Computer Engineering and Knowledge (ICCKE), Tehran, Iran, 2021: 328–333.
    [12] PARK S, KIM G, OH Y, et al. Multi-task vision Transformer using low-level chest X-ray feature corpus for COVID-19 diagnosis and severity quantification[J]. Medical Image Analysis, 2022, 75: 102299. doi: 10.1016/j.media.2021.102299
    [13] SOARES E, ANGELOV P, BIASO S, et al. SARS-CoV-2 CT-scan dataset: A large dataset of real patients CT scans for SARS-CoV-2 identification[EB/OL]. https://www.medrxiv.org/content/10.1101/2022.04.24.20078584, 2020.
    [14] ZHAO Jinyu, ZHANG Yichen, HE Xuehai, et al. COVID-CT-dataset: A CT scan dataset about COVID-19[EB/OL].https://arxiv.org/abs/2003.13865v1, 2020.
    [15] ZHOU Tao, YE Xinyu, LU Huiling, et al. Dense convolutional network and its application in medical image analysis[J]. BioMed Research International, 2022, 2022: 2384830. doi: 10.1155/2022/2384830
    [16] RADOSAVOVIC I, KOSARAJU R P, GIRSHICK R, et al. Designing network design spaces[C]. 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, USA, 2020: 10425–10433.
    [17] PENG Zhiliang, HUANG Wei, GU Shanzhi, et al. Conformer: Local features coupling global representations for visual recognition[C]. 2021 IEEE/CVF International Conference on Computer Vision (ICCV), Montreal, Canada, 2021: 357–366,
    [18] DING Xiaohan, ZHANG Xiangyu, ZHOU Yizhuang, et al. Scaling up your kernels to 31x31: Revisiting large kernel design in CNNs[J]. arXiv preprint arXiv: 2203.06717, 2022.
    [19] RAVI V, NARASIMHAN H, CHAKRABORTY C, et al. Deep learning-based meta-classifier approach for COVID-19 classification using CT scan and chest X-ray images[J]. Multimedia Systems, 2022, 28(4): 1401–1415. doi: 10.1007/s00530-021-00826-1
    [20] JAVADIMOGHADDAM S and GHOLAMALINEJAD H. A novel deep learning based method for COVID-19 detection from CT image[J]. Biomedical Signal Processing and Control, 2021, 70: 102987. doi: 10.1016/j.bspc.2021.102987
    [21] ARDAKANI A A, KANAFI A R, ACHARYA U R, et al. Application of deep learning technique to manage COVID-19 in routine clinical practice using CT images: Results of 10 convolutional neural networks[J]. Computers in Biology and Medicine, 2020, 121: 103795. doi: 10.1016/j.compbiomed.2020.103795
  • 加载中
图(9) / 表(5)
计量
  • 文章访问数:  744
  • HTML全文浏览量:  529
  • PDF下载量:  131
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-09-08
  • 修回日期:  2022-10-31
  • 网络出版日期:  2022-11-07
  • 刊出日期:  2023-10-31

目录

    /

    返回文章
    返回