高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

一种2m元域上量子纠错码的构造方法

王玉 开晓山 朱士信

王玉, 开晓山, 朱士信. 一种2m元域上量子纠错码的构造方法[J]. 电子与信息学报, 2023, 45(5): 1731-1736. doi: 10.11999/JEIT221145
引用本文: 王玉, 开晓山, 朱士信. 一种2m元域上量子纠错码的构造方法[J]. 电子与信息学报, 2023, 45(5): 1731-1736. doi: 10.11999/JEIT221145
WANG Yu, KAI Xiaoshan, ZHU Shixin. A Construction Method of Quantum Error-correcting Codes over ${\boldsymbol F_{{2^m}}}$[J]. Journal of Electronics & Information Technology, 2023, 45(5): 1731-1736. doi: 10.11999/JEIT221145
Citation: WANG Yu, KAI Xiaoshan, ZHU Shixin. A Construction Method of Quantum Error-correcting Codes over ${\boldsymbol F_{{2^m}}}$[J]. Journal of Electronics & Information Technology, 2023, 45(5): 1731-1736. doi: 10.11999/JEIT221145

一种2m元域上量子纠错码的构造方法

doi: 10.11999/JEIT221145
基金项目: 国家自然科学基金(12171134, U21A20428),安徽省高校优秀青年人才支持计划项目(gxyqZD2021137)
详细信息
    作者简介:

    王玉:男,副教授,博士,研究方向为代数编码

    开晓山:男,教授,博士生导师,研究方向为代数编码

    朱士信:男,教授,博士生导师,研究方向为代数编码理论、信息安全与序列密码等

    通讯作者:

    王玉 wangyu351@hfuu.edu.cn

  • 中图分类号: TN911.22

A Construction Method of Quantum Error-correcting Codes over ${\boldsymbol F_{{2^m}}}$

Funds: The National Natural Science Foundation of China (12171134, U21A20428), The Key Project of Support Program for Outstanding Young Talents in University of Anhui Province (gxyqZD2021137)
  • 摘要: 构造具有良好参数的量子码是量子纠错码研究的重要内容。该文利用有限非链环$ R = {F_{{4^m}}} + v{F_{{4^m}}} $上的厄米特对偶包含常循环码来构造$ {2^m} $元量子码。定义了一种新的Gray 映射$ \phi $,能够将环$ R $上线性码$ C $的厄米特对偶包含性保持到$ \phi (C) $上。研究了环$ R $上常循环码是厄米特对偶包含码的条件。给出了一种构造$ {2^m} $元量子码的方法,并构造了一些新的4元和8元量子码。
  • 表  1  码长为34的新的4元量子码

    $ {g_1}(x) $$ {g_2}(x) $$ \phi (C) $$ {[[n,k,d]]_4} $
    $ 1{\omega ^3}1 $$ (1{\omega ^2}{\omega ^3})(1{\omega ^3}{\omega ^3}) $[34,28,5]16[[34,22,$ \ge $5]]4
    $ (1{\omega ^3}1)(1{\omega ^6}1) $$ (1{\omega ^2}{\omega ^3})(1{\omega ^3}{\omega ^3}) $[34,26,6]16[[34,18,$ \ge $6]]4
    $ (1{\omega ^3}1)(1{\omega ^6}1) $$ (1{\omega ^3}{\omega ^3})(1{\omega ^{11}}{\omega ^3})(1{\omega ^{13}}{\omega ^3}) $[34,24,7]16[[34,14,$ \ge $7]]4
    $ (1{\omega ^3}1)(1{\omega ^6}1)(1\omega 1) $$ (1{\omega ^3}{\omega ^3})(1{\omega ^{11}}{\omega ^3})(1{\omega ^{13}}{\omega ^3}) $[34,22,8]16[[34,10,$ \ge $8]]4
    $ (1{\omega ^3}1)(1{\omega ^6}1)(1\omega 1) $$ (1{\omega ^3}{\omega ^3})(1{\omega ^{11}}{\omega ^3})(1{\omega ^{13}}{\omega ^3})(1{\omega ^6}{\omega ^3}) $[34,20,9]16[[34,6,$ \ge $9]]4
    下载: 导出CSV

    表  2  新的4元量子码

    $ n $$ \lambda $$ {g_1}(x) $$ {g_2}(x) $$ \phi (C) $$ {[[n,k,d]]_4} $$ {[[n',k',d']]_4} $
    3$ 1 + v + v{\omega ^3} $$ 1{\omega ^5} $$ 1\omega $$ {[6,4,3]_{16}} $$ {[[6,2,3]]_4} $MDS
    7$ 1 + v + v{\omega ^3} $$ 1011 $$ 1{\omega ^9}0{\omega ^{12}} $$ {[14,8,6]_{16}} $$ {[[14,2, \ge 6]]_4} $$ {[[14,0,4]]_4}{\text{ }}$[15]
    11$ 1 + v + v{\omega ^3} $$ 1{\omega ^5}11{\omega ^{10}}1 $$ 1{\omega ^8}{\omega ^6}{\omega ^9}{\omega ^7}1 $$ {[22,12,7]_{16}} $$ {[[22,2, \ge 7]]_4} $${[[24,0,6]]_4}$[17]
    15$ 1 $$ (1\omega )(1{\omega ^2}) $$ 1{\omega ^4} $$ {[30,27,3]_{16}} $$ {[[30,24, \ge 3]]_4} $$ {[[31,21,3]]_4} $[17]
    17$ 1 $$ 1{\omega ^3}1 $$ 1{\omega ^6}1 $$ {[34,30,4]_{16}} $$ {[[34,26, \ge 4]]_4} $$ {[[34,24,4]]_4} $[15]
    19$ 1 + v + v{\omega ^3} $$ 1{\omega ^{10}}0{\omega ^{10}}{\omega ^{10}}{\omega ^5}{\omega ^5}{\omega ^5}1 $$ 1{\omega ^7}0\omega {\omega ^{13}}{\omega ^5}{\omega ^2}{\omega ^{11}}{\omega ^8} $$ {[38,20,11]_{16}} $$ {[[38,2, \ge 11]]_4} $$ {[[40,2,8]]_4} $[17]
    45$ 1 $$ (1\omega )(100{\omega ^4}) $$ (1{\omega ^2})(100{\omega ^5}) $$ {[90,82,4]_{16}} $$ {[[90,74, \ge 4]]_4} $$ {[[90,66,4]]_4} $[17]
    63$ 1 + v + v{\omega ^3} $$ 111{\omega ^5} $$ 1\omega $$ {[126,122,3]_{16}} $$ {[[126,118, \ge 3]]_4} $$ {[[127,113,3]]_4} $[17]
    77$ 1 $$ 1{\omega ^5}11{\omega ^{10}}1 $$ 1011 $$ {[154,146,4]_{16}} $$ {[[154,138, \ge 4]]_4} $$ {[[154,128,4]]_4} $[17]
    85$ 1 $$ (1{\omega ^2}{\omega ^3})(1{\omega ^4}{\omega ^6}) $$ (1{\omega ^9}{\omega ^9})(1{\omega ^8}{\omega ^{12}}) $$ {[170,162,4]_{16}} $$ {[[170,154, \ge 4]]_4} $$ {[[171,151,4]]_4} $[17]
    91$ 1 + v + v{\omega ^3} $$ 1{\omega ^4}{\omega ^{13}}1 $$ (1{\omega ^3}{\omega ^8}{\omega ^9})(1{\omega ^7}{\omega ^4}{\omega ^9}) $$ {[182,173,5]_{16}} $$ {[[182,164, \ge 5]]_4} $$[[185,149,5]]_4$[17]
    下载: 导出CSV

    表  3  新的8元量子码

    $ n $$ \lambda $$ {g_1}(x) $$ {g_2}(x) $$ \phi (C) $$ {[[n,k,d]]_8} $$ {[[n',k',d']]_8} $
    $ 5 $$ 1 + v + v{\omega ^7} $$ 1{\omega ^{42}}1 $$ 1{\omega ^{56}}{\omega ^{28}} $$ {[10,6,5]_{64}} $$ {[[10,2,5]]_8} $MDS
    $ 7 $$ 1 + v + v{\omega ^{21}} $$ 1{\omega ^9} $$ 1{\omega ^3} $$ {[14,12,3]_{64}} $$ {[[14,10,3]]_8} $MDS
    $ 7 $$ 1 + v + v{\omega ^{21}} $$ 1{\omega ^9} $$ (1{\omega ^3})(1{\omega ^{12}}) $$ {[14,11,4]_{64}} $$ {[[14,8,4]]_8} $MDS
    $ 21 $$ 1 + v + v{\omega ^{21}} $$ 1{\omega ^3} $$ 1\omega $$ {[42,40,3]_{64}} $$ {[[42,38,3]]_8} $MDS
    $ 35 $$ 1 + v + v{\omega ^{21}} $$ (1{\omega ^9})(1{\omega ^{57}}{\omega ^9}) $$ 1{\omega ^6} $$ {[70,66,4]_{64}} $$ {[[70,62, \ge 4]]_8} $$ {[[70,46,3]]_8} $[17]
    $ 39 $$ 1 + v + v{\omega ^{21}} $$ (1{\omega ^{47}}{\omega ^{42}})(1{\omega ^{31}}{\omega ^{21}}) $$ (1{\omega ^{27}}{\omega ^{35}})(1{\omega ^{45}}{\omega ^{14}}) $$ {[78,70,5]_{64}} $$ {[[78,62, \ge 5]]_8} $$ {[[78,46,5]]_8} $[17]
    $ 49 $$ 1 + v + v{\omega ^7} $$ 1{\omega ^9} $$ (1{\omega ^{22}})(1{\omega ^{31}}) $$ {[98,95,3]_{64}} $$ {[[98,92, \ge 3]]_8} $$ {[[99,89,3]]_8} $[17]
    $ 63 $$ 1 $$ (1\omega )(1{\omega ^2}) $$ (1{\omega ^3})(1{\omega ^4}) $$ {[126,122,4]_{64}} $$ {[[126,118, \ge 4]]_8} $$ {[[127,113,3]]_8} $[17]
    $ 65 $$ 1 + v + v{\omega ^{21}} $$ (1{\omega ^4}1)(1{\omega ^8}1) $$ (1{\omega ^{52}}{\omega ^{21}})(1{\omega ^{19}}{\omega ^{21}}) $$ {[130,122,5]_{64}} $$ {[[130,114, \ge 5]]_8} $$ {[[133,113,5]]_8} $[17]
    $ 73 $$ 1 + v + v{\omega ^7} $$ 1{\omega ^{36}}01 $$ 10{\omega ^{50}}{\omega ^{21}} $$ {[146,140,4]_{64}} $$ {[[146,134, \ge 4]]_8} $$ {[[147,122,4]]_8} $[17]
    $ 91 $$ 1 + v + v{\omega ^7} $$ (1{\omega ^9})(1{\omega ^{31}}{\omega ^{36}}) $$ (1{\omega ^{52}})(1{\omega ^{44}}{\omega ^{50}})(1{\omega ^{61}}) $$ {[182,175,5]_{64}} $$ {[[182,168, \ge 5]]_8} $$ {[[183,143,4]]_8} $[17]
    下载: 导出CSV
  • [1] CALDERBANK A R, RAINS E M, SHOR P M, et al. Quantum error correction via codes over GF(4)[J]. IEEE Transactions on Information Theory, 1998, 44(4): 1369–1387. doi: 10.1109/18.681315
    [2] ASHIKHMIN A and KNILL E. Nonbinary quantum stabilizer codes[J]. IEEE Transactions on Information Theory, 2001, 47(7): 3065–3072. doi: 10.1109/18.959288
    [3] KAI Xiaoshan, ZHU Shixin, and LI Ping. Constacyclic codes and some new quantum MDS codes[J]. IEEE Transactions on Information Theory, 2014, 60(4): 2080–2086. doi: 10.1109/TIT.2014.2308180
    [4] CHEN Bocong, LING San, and ZHANG Guanghui. Application of constacyclic codes to quantum MDS codes[J]. IEEE Transactions on Information Theory, 2015, 61(3): 1474–1484. doi: 10.1109/TIT.2015.2388576
    [5] 朱士信, 黄山, 李锦. 有限域上常循环厄密特对偶包含码及其应用[J]. 电子与信息学报, 2018, 40(5): 1072–1078. doi: 10.11999/JEIT170735

    ZHU Shixin, HUANG Shan, and LI Jin. Constacyclic Hermitian dual-containing codes over finite fields and their application[J]. Journal of Electronics &Information Technology, 2018, 40(5): 1072–1078. doi: 10.11999/JEIT170735
    [6] QIAN Jianfa, MA Wenping, and GUO Wangmei. Quantum codes from cyclic codes over finite ring[J]. International Journal of Quantum Information, 2009, 7(6): 1277–1283. doi: 10.1142/S0219749909005560
    [7] QIAN Jianfa. Quantum codes from cyclic codes over $ {F_2} + v{F_2} $ [J]. Journal of Information and Computational Science, 2013, 10(6): 1715–1722. doi: 10.12733/jics20101705
    [8] ASHRAF M and MOHAMMAD G. Construction of quantum codes from cyclic codes over $ {F_p} + v{F_p} $ [J]. International Journal of Information and Coding Theory, 2015, 3(2): 137–144. doi: 10.1504/IJICOT.2015.072627
    [9] GAO Jian and WANG Yongkang. $ u $ -Constacyclic codes over $ F_{P}+u F_{p} $ and their applications of constructing new non-binary quantum codes[J]. Quantum Information Processing, 2018, 17(1): 4. doi: 10.1007/s11128-017-1775-8
    [10] ALAHMADI A, ISLAM H, PRAKASH O, et al. New quantum codes from constacyclic codes over a non-chain ring[J]. Quantum Information Processing, 2021, 20(2): 60. doi: 10.1007/s11128-020-02977-y
    [11] ISLAM H, PRAKASH O, and VERMA R K. New quantum codes from constacyclic codes over the ring $ {R_{k, m}} $ [J]. Advances in Mathematics of Communications, 2022, 16(1): 17–35. doi: 10.3934/amc.2020097
    [12] WANG Yu, KAI Xiaoshan, SUN Zhonghua, et al. Quantum codes from Hermitian dual-containing constacyclic codes over $ \mathbb{F}_{q^{2}}+v \mathbb{F}_{q^{2}} $ [J]. Quantum Information Processing, 2021, 20(3): 122. doi: 10.1007/s11128-021-03052-w
    [13] SHI Xiaoping, HUANG Xinmei, and YUE Qin. Construction of new quantum codes derived from constacyclic codes over $ F_{q^{2}}+u F_{q^{2}}+\cdots+u^{r-1} F_{q^{2}} $ [J]. Applicable Algebra in Engineering, Communication and Computing, 2021, 32(5): 603–620. doi: 10.1007/s00200-020-00415-1
    [14] ISLAM H, PATEL S, PRAKASH O, et al. A family of constacyclic codes over a class of non-chain rings $ {A_{q, r}} $ and new quantum codes[J]. Journal of Applied Mathematics and Computing, 2022, 68(4): 2493–2514. doi: 10.1007/s12190-021-01623-9
    [15] TANG Yongsheng, YAO Ting, SUN Zhonghua, et al. Nonbinary quantum codes from constacyclic codes over polynomial residue rings[J]. Quantum Information Processing, 2020, 19(3): 84. doi: 10.1007/s11128-020-2584-z
    [16] LIU Yan, SHI Minjia, SEPASDAR Z, et al. Construction of Hermitian self-dual constacyclic codes over $ {F_{{q^2}}} + v{F_{{q^2}}} $ [J]. Applied and Computational Mathematics, 2016, 15(3): 359–369.
    [17] EDEL Y. Some good quantum twisted codes[EB/OL]. https://www.mathi.uni-heidelberg.de/~yves/Matritzen/QTBCH/QTBCHIndex.html, 2022.
  • 加载中
表(3)
计量
  • 文章访问数:  328
  • HTML全文浏览量:  119
  • PDF下载量:  75
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-09-01
  • 修回日期:  2022-11-27
  • 网络出版日期:  2022-12-02
  • 刊出日期:  2023-05-10

目录

    /

    返回文章
    返回