Loading [MathJax]/jax/output/HTML-CSS/jax.js
高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

一种2m元域上量子纠错码的构造方法

王玉 开晓山 朱士信

党小宇, 刘兆彤, 李宝龙, 李强. 物理层网络编码中连续相位调制信号的非相干多符号检测[J]. 电子与信息学报, 2016, 38(4): 877-884. doi: 10.11999/JEIT150671
引用本文: 王玉, 开晓山, 朱士信. 一种2m元域上量子纠错码的构造方法[J]. 电子与信息学报, 2023, 45(5): 1731-1736. doi: 10.11999/JEIT221145
DANG Xiaoyu, LIU Zhaotong, LI Baolong, LI Qiang. Noncoherent Multiple Symbol Detection for Continuous Phase Modulation in Physical-layer Network Coding[J]. Journal of Electronics & Information Technology, 2016, 38(4): 877-884. doi: 10.11999/JEIT150671
Citation: WANG Yu, KAI Xiaoshan, ZHU Shixin. A Construction Method of Quantum Error-correcting Codes over F2m[J]. Journal of Electronics & Information Technology, 2023, 45(5): 1731-1736. doi: 10.11999/JEIT221145

一种2m元域上量子纠错码的构造方法

doi: 10.11999/JEIT221145
基金项目: 国家自然科学基金(12171134, U21A20428),安徽省高校优秀青年人才支持计划项目(gxyqZD2021137)
详细信息
    作者简介:

    王玉:男,副教授,博士,研究方向为代数编码

    开晓山:男,教授,博士生导师,研究方向为代数编码

    朱士信:男,教授,博士生导师,研究方向为代数编码理论、信息安全与序列密码等

    通讯作者:

    王玉 wangyu351@hfuu.edu.cn

  • 中图分类号: TN911.22

A Construction Method of Quantum Error-correcting Codes over F2m

Funds: The National Natural Science Foundation of China (12171134, U21A20428), The Key Project of Support Program for Outstanding Young Talents in University of Anhui Province (gxyqZD2021137)
  • 摘要: 构造具有良好参数的量子码是量子纠错码研究的重要内容。该文利用有限非链环R=F4m+vF4m上的厄米特对偶包含常循环码来构造2m元量子码。定义了一种新的Gray 映射ϕ,能够将环R上线性码C的厄米特对偶包含性保持到ϕ(C)上。研究了环R上常循环码是厄米特对偶包含码的条件。给出了一种构造2m元量子码的方法,并构造了一些新的4元和8元量子码。
  • 表  1  码长为34的新的4元量子码

    g1(x)g2(x)ϕ(C)[[n,k,d]]4
    1ω31(1ω2ω3)(1ω3ω3)[34,28,5]16[[34,22,5]]4
    (1ω31)(1ω61)(1ω2ω3)(1ω3ω3)[34,26,6]16[[34,18,6]]4
    (1ω31)(1ω61)(1ω3ω3)(1ω11ω3)(1ω13ω3)[34,24,7]16[[34,14,7]]4
    (1ω31)(1ω61)(1ω1)(1ω3ω3)(1ω11ω3)(1ω13ω3)[34,22,8]16[[34,10,8]]4
    (1ω31)(1ω61)(1ω1)(1ω3ω3)(1ω11ω3)(1ω13ω3)(1ω6ω3)[34,20,9]16[[34,6,9]]4
    下载: 导出CSV

    表  2  新的4元量子码

    nλg1(x)g2(x)ϕ(C)[[n,k,d]]4[[n,k,d]]4
    31+v+vω31ω51ω[6,4,3]16[[6,2,3]]4MDS
    71+v+vω310111ω90ω12[14,8,6]16[[14,2,6]]4[[14,0,4]]4 [15]
    111+v+vω31ω511ω1011ω8ω6ω9ω71[22,12,7]16[[22,2,7]]4[[24,0,6]]4[17]
    151(1ω)(1ω2)1ω4[30,27,3]16[[30,24,3]]4[[31,21,3]]4[17]
    1711ω311ω61[34,30,4]16[[34,26,4]]4[[34,24,4]]4[15]
    191+v+vω31ω100ω10ω10ω5ω5ω511ω70ωω13ω5ω2ω11ω8[38,20,11]16[[38,2,11]]4[[40,2,8]]4[17]
    451(1ω)(100ω4)(1ω2)(100ω5)[90,82,4]16[[90,74,4]]4[[90,66,4]]4[17]
    631+v+vω3111ω51ω[126,122,3]16[[126,118,3]]4[[127,113,3]]4[17]
    7711ω511ω1011011[154,146,4]16[[154,138,4]]4[[154,128,4]]4[17]
    851(1ω2ω3)(1ω4ω6)(1ω9ω9)(1ω8ω12)[170,162,4]16[[170,154,4]]4[[171,151,4]]4[17]
    911+v+vω31ω4ω131(1ω3ω8ω9)(1ω7ω4ω9)[182,173,5]16[[182,164,5]]4[[185,149,5]]4[17]
    下载: 导出CSV

    表  3  新的8元量子码

    nλg1(x)g2(x)ϕ(C)[[n,k,d]]8[[n,k,d]]8
    51+v+vω71ω4211ω56ω28[10,6,5]64[[10,2,5]]8MDS
    71+v+vω211ω91ω3[14,12,3]64[[14,10,3]]8MDS
    71+v+vω211ω9(1ω3)(1ω12)[14,11,4]64[[14,8,4]]8MDS
    211+v+vω211ω31ω[42,40,3]64[[42,38,3]]8MDS
    351+v+vω21(1ω9)(1ω57ω9)1ω6[70,66,4]64[[70,62,4]]8[[70,46,3]]8[17]
    391+v+vω21(1ω47ω42)(1ω31ω21)(1ω27ω35)(1ω45ω14)[78,70,5]64[[78,62,5]]8[[78,46,5]]8[17]
    491+v+vω71ω9(1ω22)(1ω31)[98,95,3]64[[98,92,3]]8[[99,89,3]]8[17]
    631(1ω)(1ω2)(1ω3)(1ω4)[126,122,4]64[[126,118,4]]8[[127,113,3]]8[17]
    651+v+vω21(1ω41)(1ω81)(1ω52ω21)(1ω19ω21)[130,122,5]64[[130,114,5]]8[[133,113,5]]8[17]
    731+v+vω71ω360110ω50ω21[146,140,4]64[[146,134,4]]8[[147,122,4]]8[17]
    911+v+vω7(1ω9)(1ω31ω36)(1ω52)(1ω44ω50)(1ω61)[182,175,5]64[[182,168,5]]8[[183,143,4]]8[17]
    下载: 导出CSV
  • [1] CALDERBANK A R, RAINS E M, SHOR P M, et al. Quantum error correction via codes over GF(4)[J]. IEEE Transactions on Information Theory, 1998, 44(4): 1369–1387. doi: 10.1109/18.681315
    [2] ASHIKHMIN A and KNILL E. Nonbinary quantum stabilizer codes[J]. IEEE Transactions on Information Theory, 2001, 47(7): 3065–3072. doi: 10.1109/18.959288
    [3] KAI Xiaoshan, ZHU Shixin, and LI Ping. Constacyclic codes and some new quantum MDS codes[J]. IEEE Transactions on Information Theory, 2014, 60(4): 2080–2086. doi: 10.1109/TIT.2014.2308180
    [4] CHEN Bocong, LING San, and ZHANG Guanghui. Application of constacyclic codes to quantum MDS codes[J]. IEEE Transactions on Information Theory, 2015, 61(3): 1474–1484. doi: 10.1109/TIT.2015.2388576
    [5] 朱士信, 黄山, 李锦. 有限域上常循环厄密特对偶包含码及其应用[J]. 电子与信息学报, 2018, 40(5): 1072–1078. doi: 10.11999/JEIT170735

    ZHU Shixin, HUANG Shan, and LI Jin. Constacyclic Hermitian dual-containing codes over finite fields and their application[J]. Journal of Electronics &Information Technology, 2018, 40(5): 1072–1078. doi: 10.11999/JEIT170735
    [6] QIAN Jianfa, MA Wenping, and GUO Wangmei. Quantum codes from cyclic codes over finite ring[J]. International Journal of Quantum Information, 2009, 7(6): 1277–1283. doi: 10.1142/S0219749909005560
    [7] QIAN Jianfa. Quantum codes from cyclic codes over F2+vF2 [J]. Journal of Information and Computational Science, 2013, 10(6): 1715–1722. doi: 10.12733/jics20101705
    [8] ASHRAF M and MOHAMMAD G. Construction of quantum codes from cyclic codes over Fp+vFp [J]. International Journal of Information and Coding Theory, 2015, 3(2): 137–144. doi: 10.1504/IJICOT.2015.072627
    [9] GAO Jian and WANG Yongkang. u -Constacyclic codes over FP+uFp and their applications of constructing new non-binary quantum codes[J]. Quantum Information Processing, 2018, 17(1): 4. doi: 10.1007/s11128-017-1775-8
    [10] ALAHMADI A, ISLAM H, PRAKASH O, et al. New quantum codes from constacyclic codes over a non-chain ring[J]. Quantum Information Processing, 2021, 20(2): 60. doi: 10.1007/s11128-020-02977-y
    [11] ISLAM H, PRAKASH O, and VERMA R K. New quantum codes from constacyclic codes over the ring Rk,m [J]. Advances in Mathematics of Communications, 2022, 16(1): 17–35. doi: 10.3934/amc.2020097
    [12] WANG Yu, KAI Xiaoshan, SUN Zhonghua, et al. Quantum codes from Hermitian dual-containing constacyclic codes over Fq2+vFq2 [J]. Quantum Information Processing, 2021, 20(3): 122. doi: 10.1007/s11128-021-03052-w
    [13] SHI Xiaoping, HUANG Xinmei, and YUE Qin. Construction of new quantum codes derived from constacyclic codes over Fq2+uFq2++ur1Fq2 [J]. Applicable Algebra in Engineering, Communication and Computing, 2021, 32(5): 603–620. doi: 10.1007/s00200-020-00415-1
    [14] ISLAM H, PATEL S, PRAKASH O, et al. A family of constacyclic codes over a class of non-chain rings Aq,r and new quantum codes[J]. Journal of Applied Mathematics and Computing, 2022, 68(4): 2493–2514. doi: 10.1007/s12190-021-01623-9
    [15] TANG Yongsheng, YAO Ting, SUN Zhonghua, et al. Nonbinary quantum codes from constacyclic codes over polynomial residue rings[J]. Quantum Information Processing, 2020, 19(3): 84. doi: 10.1007/s11128-020-2584-z
    [16] LIU Yan, SHI Minjia, SEPASDAR Z, et al. Construction of Hermitian self-dual constacyclic codes over Fq2+vFq2 [J]. Applied and Computational Mathematics, 2016, 15(3): 359–369.
    [17] EDEL Y. Some good quantum twisted codes[EB/OL]. https://www.mathi.uni-heidelberg.de/~yves/Matritzen/QTBCH/QTBCHIndex.html, 2022.
  • 加载中
表(3)
计量
  • 文章访问数:  377
  • HTML全文浏览量:  137
  • PDF下载量:  81
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-09-01
  • 修回日期:  2022-11-27
  • 网络出版日期:  2022-12-02
  • 刊出日期:  2023-05-10

目录

    /

    返回文章
    返回