A Construction Method of Quantum Error-correcting Codes over F2m
-
摘要: 构造具有良好参数的量子码是量子纠错码研究的重要内容。该文利用有限非链环
R=F4m+vF4m 上的厄米特对偶包含常循环码来构造2m 元量子码。定义了一种新的Gray 映射ϕ ,能够将环R 上线性码C 的厄米特对偶包含性保持到ϕ(C) 上。研究了环R 上常循环码是厄米特对偶包含码的条件。给出了一种构造2m 元量子码的方法,并构造了一些新的4元和8元量子码。Abstract: Constructing quantum codes with good parameters is an important part of quantum error-correcting codes research. In this paper,2m -ary quantum codes are derived through Hermitian dual-containing constacyclic codes over finite non-chain ringR=F4m+vF4m . A new Gray mapϕ is defined, which is Hermitian dual-containing preserving from a linear code C over R toϕ(C) . The condition for constacyclic codes over R to be Hermitian dual-containing is studied. A method of constructing2m -ary quantum codes is presented, and some new 4-ary and 8-ary quantum codes are obtained.-
Key words:
- Constacyclic codes /
- Quantum codes /
- Finite non-chain ring /
- Gray map
-
表 1 码长为34的新的4元量子码
g1(x) g2(x) ϕ(C) [[n,k,d]]4 1ω31 (1ω2ω3)(1ω3ω3) [34,28,5]16 [[34,22,≥5]]4 (1ω31)(1ω61) (1ω2ω3)(1ω3ω3) [34,26,6]16 [[34,18,≥6]]4 (1ω31)(1ω61) (1ω3ω3)(1ω11ω3)(1ω13ω3) [34,24,7]16 [[34,14,≥7]]4 (1ω31)(1ω61)(1ω1) (1ω3ω3)(1ω11ω3)(1ω13ω3) [34,22,8]16 [[34,10,≥8]]4 (1ω31)(1ω61)(1ω1) (1ω3ω3)(1ω11ω3)(1ω13ω3)(1ω6ω3) [34,20,9]16 [[34,6,≥9]]4 表 2 新的4元量子码
n λ g1(x) g2(x) ϕ(C) [[n,k,d]]4 [[n′,k′,d′]]4 3 1+v+vω3 1ω5 1ω [6,4,3]16 [[6,2,3]]4 MDS 7 1+v+vω3 1011 1ω90ω12 [14,8,6]16 [[14,2,≥6]]4 [[14,0,4]]4 [15] 11 1+v+vω3 1ω511ω101 1ω8ω6ω9ω71 [22,12,7]16 [[22,2,≥7]]4 [[24,0,6]]4[17] 15 1 (1ω)(1ω2) 1ω4 [30,27,3]16 [[30,24,≥3]]4 [[31,21,3]]4[17] 17 1 1ω31 1ω61 [34,30,4]16 [[34,26,≥4]]4 [[34,24,4]]4[15] 19 1+v+vω3 1ω100ω10ω10ω5ω5ω51 1ω70ωω13ω5ω2ω11ω8 [38,20,11]16 [[38,2,≥11]]4 [[40,2,8]]4[17] 45 1 (1ω)(100ω4) (1ω2)(100ω5) [90,82,4]16 [[90,74,≥4]]4 [[90,66,4]]4[17] 63 1+v+vω3 111ω5 1ω [126,122,3]16 [[126,118,≥3]]4 [[127,113,3]]4[17] 77 1 1ω511ω101 1011 [154,146,4]16 [[154,138,≥4]]4 [[154,128,4]]4[17] 85 1 (1ω2ω3)(1ω4ω6) (1ω9ω9)(1ω8ω12) [170,162,4]16 [[170,154,≥4]]4 [[171,151,4]]4[17] 91 1+v+vω3 1ω4ω131 (1ω3ω8ω9)(1ω7ω4ω9) [182,173,5]16 [[182,164,≥5]]4 [[185,149,5]]4[17] 表 3 新的8元量子码
n λ g1(x) g2(x) ϕ(C) [[n,k,d]]8 [[n′,k′,d′]]8 5 1+v+vω7 1ω421 1ω56ω28 [10,6,5]64 [[10,2,5]]8 MDS 7 1+v+vω21 1ω9 1ω3 [14,12,3]64 [[14,10,3]]8 MDS 7 1+v+vω21 1ω9 (1ω3)(1ω12) [14,11,4]64 [[14,8,4]]8 MDS 21 1+v+vω21 1ω3 1ω [42,40,3]64 [[42,38,3]]8 MDS 35 1+v+vω21 (1ω9)(1ω57ω9) 1ω6 [70,66,4]64 [[70,62,≥4]]8 [[70,46,3]]8[17] 39 1+v+vω21 (1ω47ω42)(1ω31ω21) (1ω27ω35)(1ω45ω14) [78,70,5]64 [[78,62,≥5]]8 [[78,46,5]]8[17] 49 1+v+vω7 1ω9 (1ω22)(1ω31) [98,95,3]64 [[98,92,≥3]]8 [[99,89,3]]8[17] 63 1 (1ω)(1ω2) (1ω3)(1ω4) [126,122,4]64 [[126,118,≥4]]8 [[127,113,3]]8[17] 65 1+v+vω21 (1ω41)(1ω81) (1ω52ω21)(1ω19ω21) [130,122,5]64 [[130,114,≥5]]8 [[133,113,5]]8[17] 73 1+v+vω7 1ω3601 10ω50ω21 [146,140,4]64 [[146,134,≥4]]8 [[147,122,4]]8[17] 91 1+v+vω7 (1ω9)(1ω31ω36) (1ω52)(1ω44ω50)(1ω61) [182,175,5]64 [[182,168,≥5]]8 [[183,143,4]]8[17] -
[1] CALDERBANK A R, RAINS E M, SHOR P M, et al. Quantum error correction via codes over GF(4)[J]. IEEE Transactions on Information Theory, 1998, 44(4): 1369–1387. doi: 10.1109/18.681315 [2] ASHIKHMIN A and KNILL E. Nonbinary quantum stabilizer codes[J]. IEEE Transactions on Information Theory, 2001, 47(7): 3065–3072. doi: 10.1109/18.959288 [3] KAI Xiaoshan, ZHU Shixin, and LI Ping. Constacyclic codes and some new quantum MDS codes[J]. IEEE Transactions on Information Theory, 2014, 60(4): 2080–2086. doi: 10.1109/TIT.2014.2308180 [4] CHEN Bocong, LING San, and ZHANG Guanghui. Application of constacyclic codes to quantum MDS codes[J]. IEEE Transactions on Information Theory, 2015, 61(3): 1474–1484. doi: 10.1109/TIT.2015.2388576 [5] 朱士信, 黄山, 李锦. 有限域上常循环厄密特对偶包含码及其应用[J]. 电子与信息学报, 2018, 40(5): 1072–1078. doi: 10.11999/JEIT170735ZHU Shixin, HUANG Shan, and LI Jin. Constacyclic Hermitian dual-containing codes over finite fields and their application[J]. Journal of Electronics &Information Technology, 2018, 40(5): 1072–1078. doi: 10.11999/JEIT170735 [6] QIAN Jianfa, MA Wenping, and GUO Wangmei. Quantum codes from cyclic codes over finite ring[J]. International Journal of Quantum Information, 2009, 7(6): 1277–1283. doi: 10.1142/S0219749909005560 [7] QIAN Jianfa. Quantum codes from cyclic codes over F2+vF2 [J]. Journal of Information and Computational Science, 2013, 10(6): 1715–1722. doi: 10.12733/jics20101705[8] ASHRAF M and MOHAMMAD G. Construction of quantum codes from cyclic codes over Fp+vFp [J]. International Journal of Information and Coding Theory, 2015, 3(2): 137–144. doi: 10.1504/IJICOT.2015.072627[9] GAO Jian and WANG Yongkang. u -Constacyclic codes overFP+uFp and their applications of constructing new non-binary quantum codes[J]. Quantum Information Processing, 2018, 17(1): 4. doi: 10.1007/s11128-017-1775-8[10] ALAHMADI A, ISLAM H, PRAKASH O, et al. New quantum codes from constacyclic codes over a non-chain ring[J]. Quantum Information Processing, 2021, 20(2): 60. doi: 10.1007/s11128-020-02977-y [11] ISLAM H, PRAKASH O, and VERMA R K. New quantum codes from constacyclic codes over the ring Rk,m [J]. Advances in Mathematics of Communications, 2022, 16(1): 17–35. doi: 10.3934/amc.2020097[12] WANG Yu, KAI Xiaoshan, SUN Zhonghua, et al. Quantum codes from Hermitian dual-containing constacyclic codes over Fq2+vFq2 [J]. Quantum Information Processing, 2021, 20(3): 122. doi: 10.1007/s11128-021-03052-w[13] SHI Xiaoping, HUANG Xinmei, and YUE Qin. Construction of new quantum codes derived from constacyclic codes over Fq2+uFq2+⋯+ur−1Fq2 [J]. Applicable Algebra in Engineering, Communication and Computing, 2021, 32(5): 603–620. doi: 10.1007/s00200-020-00415-1[14] ISLAM H, PATEL S, PRAKASH O, et al. A family of constacyclic codes over a class of non-chain rings Aq,r and new quantum codes[J]. Journal of Applied Mathematics and Computing, 2022, 68(4): 2493–2514. doi: 10.1007/s12190-021-01623-9[15] TANG Yongsheng, YAO Ting, SUN Zhonghua, et al. Nonbinary quantum codes from constacyclic codes over polynomial residue rings[J]. Quantum Information Processing, 2020, 19(3): 84. doi: 10.1007/s11128-020-2584-z [16] LIU Yan, SHI Minjia, SEPASDAR Z, et al. Construction of Hermitian self-dual constacyclic codes over Fq2+vFq2 [J]. Applied and Computational Mathematics, 2016, 15(3): 359–369.[17] EDEL Y. Some good quantum twisted codes[EB/OL]. https://www.mathi.uni-heidelberg.de/~yves/Matritzen/QTBCH/QTBCHIndex.html, 2022. -
表(3)
计量
- 文章访问数: 377
- HTML全文浏览量: 137
- PDF下载量: 81
- 被引次数: 0