高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于ZnO忆阻器的高鲁棒性毛刺型物理不可克隆函数设计

陈鑫辉 倪力 刘子坚 张跃军 陈祺来 刘钢

陈鑫辉, 倪力, 刘子坚, 张跃军, 陈祺来, 刘钢. 基于ZnO忆阻器的高鲁棒性毛刺型物理不可克隆函数设计[J]. 电子与信息学报, 2023, 45(9): 3331-3339. doi: 10.11999/JEIT221086
引用本文: 陈鑫辉, 倪力, 刘子坚, 张跃军, 陈祺来, 刘钢. 基于ZnO忆阻器的高鲁棒性毛刺型物理不可克隆函数设计[J]. 电子与信息学报, 2023, 45(9): 3331-3339. doi: 10.11999/JEIT221086
CHEN Xinhui, NI Li, LIU Zijian, ZHANG Yuejun, CHEN Qilai, LIU Gang. Design of Highly Robust Glitch-Physical Uunclonable Functions Based on ZnO Memristor[J]. Journal of Electronics & Information Technology, 2023, 45(9): 3331-3339. doi: 10.11999/JEIT221086
Citation: CHEN Xinhui, NI Li, LIU Zijian, ZHANG Yuejun, CHEN Qilai, LIU Gang. Design of Highly Robust Glitch-Physical Uunclonable Functions Based on ZnO Memristor[J]. Journal of Electronics & Information Technology, 2023, 45(9): 3331-3339. doi: 10.11999/JEIT221086

基于ZnO忆阻器的高鲁棒性毛刺型物理不可克隆函数设计

doi: 10.11999/JEIT221086
基金项目: 国家自然科学基金(61871244, 62104267),浙江省省属高校基本科研业务费专项资金(SJLY2020015),浙江省大学生新苗人才计划(2022R474A001),金华市重大(重点)科学技术研究计划(2021-1-014)
详细信息
    作者简介:

    陈鑫辉:男,助教,研究方向为忆阻器电路设计及实现

    倪力:男,硕士生,研究方向为安全芯片理论和设计

    刘子坚:男,副教授,研究方向为低功耗集成电路设计

    张跃军:男,教授,研究方向为低功耗、高信息密度集成电路理论和设计

    陈祺来:男,博士后,研究方向为集成电路及新型器件电路设计

    刘钢:男,教授,研究方向为基于新型半导体材料的非冯忆阻逻辑器件与神经形态器件

    通讯作者:

    刘子坚 liuzijian@jhc.edu.cn

  • 中图分类号: TN915.08; TN601

Design of Highly Robust Glitch-Physical Uunclonable Functions Based on ZnO Memristor

Funds: The National Natural Science Foundation of China (61871244, 62104267), The Fundamental Research Funds for the Provincial Universities of Zhejiang (SJLY2020015), The Fresh Talent Programme for Science and Technology Department of Zhejiang Province (2022R474A001), The Projects of Major (Key) Science and Technology Research in Jinhua (2021-1-014)
  • 摘要: 物理不可克隆函数(PUF)作为硬件安全原语,广泛应用于众多领域。针对传统硅基类PUF电路可靠性差和易受建模攻击等问题,该文提出一种基于忆阻器的“毛刺”型物理不可克隆函数电路(Glitch-PUF)。该方案首先利用忆阻器的非易失性和阻变效应,实现二值逻辑完备集;然后,利用完备集和竞争冒险现象设计忆阻毛刺产生模块,通过选通信号控制流经忆阻交叉阵列路径的延时大小,改变“毛刺”宽度获得稳定“毛刺”输出;最后,利用忆阻器的存算一体特性和施密特回滞效应设计忆阻采样模块,并测试Glitch-PUF性能。实验结果表明,所设计的Glitch-PUF电路相比文献,抗攻击性提高4.9%~14.3%,随机性达到98.2%,误码率(BER)为0.08%,具有优异的鲁棒性和稳定性。
  • 图  1  Pt/ZnO/Pt忆阻器电学参数

    图  2  基于忆阻器的逻辑门

    图  3  毛刺产生原理

    图  4  Glitch PUF电路框图

    图  5  忆阻D触发器模块

    图  6  忆阻毛刺产生模块

    图  7  忆阻采样模块

    图  8  Glitch-PUF电路抗攻击性测试

    图  9  Glitch-PUF电路随机性测试

    图  10  Glitch-PUF电路自相关性测试

    图  11  Glitch-PUF电路唯一性测试

    图  12  Glitch-PUF电路误码率测试

    算法1 忆阻器伪代码程序描述
     (1)RON=100 ROFF=5 000 VON=0.8 VOFF=0.8 L0=3e-9 Eh=0.6 XT=0.4e-9
     (2)f=1e13 I0=1e13 WCF=5e-9 weff=0.5e-9 Rth= 5e5 Ei=1.45 T0=300
     (3)alpha=0.75e-9 TAU=0.000 1 k=1.380 649e-23 e=1.6e–19 w=0.5e-9
     (3)Kb=8.617 33e–5 pi = 3.141 592 6 a=0.25e-9 Ea=0.489 9 rou=1.9e-5
     (4)G(v)=V/RON+(1–V)/ROFF
     (5)Temp=T0+abs(Itb×Vtb×Rth)
     (6)dx=–a×f×exp(–(Ea-Vg×alpha×2/x)/(Kb×Temp))
     (7)dw=(weff+pow(weff,2)/(2×w))×f×exp(–(EaVtb×alpha×2/L0)/(Kb×Temp))
     (8)I1=I0×pi×(WCF×WCF/4-w×w/4)×exp(–L0/XT)×sinh(Vtb/VT)
     (9)RCF=rou×(L0-x)/(pi×w×w/4)
     (10)Vg=Vtb–(ItbI1)×RCF
     (11)dx/dt =(1/TAU)×((1/(1+exp(–1/(T×k/e)×(VtbVon))))×(1–Vtb)–(1–(1/(1+exp(–1/(T×k/e)×(Vtb+Voff)))))×V2
     (12)IVRel(V1,V2)=V1×G(V2)
    下载: 导出CSV

    表  1  NIST测试

    测试项目长度(bit)测试次数(次)通过率(%)P测试通过
    单比特频数6400101000.589
    块内频数640010900.436
    累加和6400101000.825
    近似熵6400101000.371
    游程6400101000.328
    最大游程6400101000.682
    离散傅里叶变换6400101000.737
    序列6400101000.253
    通用统计6400101000.375
    二进制矩阵秩6400101000.411
    下载: 导出CSV

    表  2  与相关文献的比较结果

    比较文献工艺(nm)NIST测试电压(V)温度(℃)汉明距离(归一化)误码率(%)
    VLSI[15]1301.08~1.3–20~800.499 99.000
    ISSCC[16]65PASS0.7~1.025~850.501 41.730
    IEDM[17]PASS0.8~1.225~850.499 511.500
    VLSI[18]2001.0~1.325~1000.500 15.300
    ISSCC[19]130PASS0.9~1.825~1250.498 91.730
    TCASI[20]65PASS0.5~1.0–10~800.494 73.000
    JSSC[21]180PASS0.4~1.810~800.493 00.130
    本文65PASS0.8~1.4–20~1200.500 20.008
    下载: 导出CSV
  • [1] GENKIN D, PIPMAN I, and TROMER E. Get your hands off my laptop: Physical side-channel key-extraction attacks on PCs[J]. Journal of Cryptographic Engineering, 2015, 5(2): 95–112. doi: 10.1007/s13389-015-0100-7
    [2] WANG Xiaoxiao and TEHRANIPOOR M. Novel physical unclonable function with process and environmental variations[C]. 2010 Design, Automation & Test in Europe Conference & Exhibition, Dresden, Germany, 2010: 1065–1070.
    [3] ZHAO Qiang, WU Yiheng, ZHAO Xiao, et al. A 1036-F2/bit high reliability temperature compensated cross-coupled comparator-based PUF[J]. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 2020, 28(6): 1449–1460. doi: 10.1109/TVLSI.2020.2980306
    [4] HE Zhangqing, WAN Meilin, DENG Jie, et al. A reliable strong PUF based on switched-capacitor circuit[J]. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 2018, 26(6): 1073–1083. doi: 10.1109/TVLSI.2018.2806041
    [5] GOVINDARAJ R, GHOSH S, and KATKOORI S. Design, analysis and application of embedded resistive RAM based strong arbiter PUF[J]. IEEE Transactions on Dependable and Secure Computing, 2020, 17(6): 1232–1242. doi: 10.1109/TDSC.2018.2866425
    [6] AVVARU S V S, ZENG Ziqing, and PARHI K K. Homogeneous and heterogeneous feed-forward XOR physical unclonable functions[J]. IEEE Transactions on Information Forensics and Security, 2020, 15: 2485–2498. doi: 10.1109/TIFS.2020.2968113
    [7] MANDRY H, HERKLE A, MÜELICH S, et al. Normalization and multi-valued symbol extraction from RO-PUFs for enhanced uniform probability distribution[J]. IEEE Transactions on Circuits and Systems II:Express Briefs, 2020, 67(12): 3372–3376. doi: 10.1109/TCSII.2020.2980748
    [8] YE Jing, GUO Qingli, HU Yu, et al. Modeling attacks on strong physical unclonable functions strengthened by random number and weak PUF[C]. 2018 IEEE 36th VLSI Test Symposium (VTS), San Francisco, USA, 2018: 1–6,
    [9] 张跃军, 汪鹏君, 李刚, 等. 基于信号传输理论的Glitch物理不可克隆函数电路设计[J]. 电子与信息学报, 2016, 38(9): 2391–2396. doi: 10.11999/JEIT151312

    ZHANG Yuejun, WANG Pengjun, LI Gang, et al. Design of glitch physical unclonable functions circuit based on signal transmission theory[J]. Journal of Electronics &Information Technology, 2016, 38(9): 2391–2396. doi: 10.11999/JEIT151312
    [10] NOZAKI Y, TAKEMOTO S, IKEZAKI Y, et al. Performance evaluation of unrolled cipher based Glitch PUF implemented on Virtex-7[C]. 2021 International Symposium on Devices, Circuits and Systems (ISDCS), Higashihiroshima, Japan, 2021: 1–4.
    [11] NI Li, WANG Pengjun, ZHANG Yuejun, et al. A reliable multi-information entropy Glitch PUF using schmitt trigger sampling method for IoT security[C]. 2021 IEEE 14th International Conference on ASIC (ASICON), Kunming, China, 2021: 1–4.
    [12] 董永兴, 徐金甫, 李军伟. 基于延时控制的Glitch PUF电路设计[J]. 计算机应用与软件, 2020, 37(11): 311–315,333. doi: 10.3969/j.issn.1000-386x.2020.11.050

    DONG Yongxing, XU Jinfu, and LI Junwei. Design of Glitch PUF based on delay control[J]. Computer Applications and Software, 2020, 37(11): 311–315,333. doi: 10.3969/j.issn.1000-386x.2020.11.050
    [13] 张章, 李超, 韩婷婷, 等. 基于忆阻器的感存算一体技术综述[J]. 电子与信息学报, 2021, 43(6): 1498–1509. doi: 10.11999/JEIT201102

    ZHANG Zhang, LI Chao, HAN Tingting, et al. Review of the fused technology of sensing, storage and computing based on memristor[J]. Journal of Electronics &Information Technology, 2021, 43(6): 1498–1509. doi: 10.11999/JEIT201102
    [14] NI Li, WANG Penjun, ZHANG Yuejun, et al. An ACF<0.03 low-power software PUF based on the RISC-V processor for IoT security[J]. Microelectronics Journal, 2022, 121: 105362. doi: 10.1016/j.mejo.2022.105362
    [15] XI Xiaodan, ZHUANG Haoyu, SUN Nan, et al. Strong subthreshold current array PUF with 265 challenge-response pairs resilient to machine learning attacks in 130nm CMOS[C]. 2017 Symposium on VLSI Circuits, Kyoto, Japan, 2017: C268–C269.
    [16] ALVAREZ A, ZHAO Wenfeng, and ALIOTO M. 15fJ/b static physically unclonable functions for secure chip identification with <2% native bit instability and 140× Inter/Intra PUF hamming distance separation in 65nm[C]. 2015 IEEE International Solid-State Circuits Conference-(ISSCC) Digest of Technical Papers, San Francisco, USA, 2015: 1–3.
    [17] MAHMOODI M R, NILI H, FAHIMI Z, et al. Ultra-low power physical unclonable function with nonlinear fixed-resistance crossbar circuits[C]. 2019 IEEE International Electron Devices Meeting (IEDM), San Francisco, USA, 2019: 30.1. 1–30.1. 4.
    [18] MAHMOODI M R, NILI H, and STRUKOV D B. RX-PUF: Low power, dense, reliable, and resilient physically unclonable functions based on analog passive RRAM crossbar arrays[C]. 2018 IEEE Symposium on VLSI Technology, Honolulu, USA, 2018: 99–100.
    [19] YANG Kaiyuan, DONG Qing, BLAAUW D, et al. A 553F2 2-transistor amplifier-based physically unclonable function (PUF) with 1.67% native instability[C]. 2017 IEEE International Solid-State Circuits Conference (ISSCC), San Francisco, USA, 2017: 146–147.
    [20] LU Lu, YOO T, and KIM T T H. A 6T SRAM based two-dimensional configurable challenge-response PUF for portable devices[J]. IEEE Transactions on Circuits and Systems I:Regular Papers, 2022, 69(6): 2542–2552. doi: 10.1109/TCSI.2022.3156983
    [21] VATALARO M, DE ROSE R, LANUZZA M, et al. Static CMOS physically unclonable function based on 4T voltage divider with 0.6%–1.5% bit instability at 0.4–1.8V operation in 180 nm[J]. IEEE Journal of Solid-State Circuits, 2022, 57(8): 2509–2520. doi: 10.1109/JSSC.2022.3151229
  • 加载中
图(12) / 表(3)
计量
  • 文章访问数:  362
  • HTML全文浏览量:  193
  • PDF下载量:  56
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-08-17
  • 修回日期:  2022-10-28
  • 网络出版日期:  2022-11-05
  • 刊出日期:  2023-09-27

目录

    /

    返回文章
    返回