高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于深度强化学习的有源中点钳位逆变器效率优化设计

王佳宁 杨仁海 姚张浩 彭强 谢绿伟

王佳宁, 杨仁海, 姚张浩, 彭强, 谢绿伟. 基于深度强化学习的有源中点钳位逆变器效率优化设计[J]. 电子与信息学报, 2023, 45(9): 3311-3320. doi: 10.11999/JEIT221059
引用本文: 王佳宁, 杨仁海, 姚张浩, 彭强, 谢绿伟. 基于深度强化学习的有源中点钳位逆变器效率优化设计[J]. 电子与信息学报, 2023, 45(9): 3311-3320. doi: 10.11999/JEIT221059
WANG Jianing, YANG Renhai, YAO Zhanghao, PENG Qiang, XIE Lüwei. Efficiency Optimized Design of Active Neutral Point Clamped Inverter Based on Deep Reinforcement Learning[J]. Journal of Electronics & Information Technology, 2023, 45(9): 3311-3320. doi: 10.11999/JEIT221059
Citation: WANG Jianing, YANG Renhai, YAO Zhanghao, PENG Qiang, XIE Lüwei. Efficiency Optimized Design of Active Neutral Point Clamped Inverter Based on Deep Reinforcement Learning[J]. Journal of Electronics & Information Technology, 2023, 45(9): 3311-3320. doi: 10.11999/JEIT221059

基于深度强化学习的有源中点钳位逆变器效率优化设计

doi: 10.11999/JEIT221059
基金项目: 国家自然科学基金(52077051),合肥综合性国家科学中心能源研究院重大培育项目(21KZS203),高等学校学科创新引智计划(BP0719039)
详细信息
    作者简介:

    王佳宁:男,博士,教授,研究方向为电力设备的封装和可靠性测试、电力电子转换器的集成、宽带隙电力设备的应用、电磁建模

    杨仁海:男,硕士生,研究方向为人工智能算法在电力电子装备自动化设计中的应用

    姚张浩:男,硕士生,研究方向为人工智能算法在电力电子方向的应用

    彭强:男,硕士,研究方向为电力电子EMI噪声、人工智能在电力电子方向的应用

    谢绿伟:男,硕士,研究方向为人工智能算法在电力电子方向的应用

    通讯作者:

    杨仁海 2389954931@qq.com

  • 中图分类号: TN710; TP181

Efficiency Optimized Design of Active Neutral Point Clamped Inverter Based on Deep Reinforcement Learning

Funds: The National Natural Science Foundation of China (52077051), The Institute of Energy, Hefei Comprehensive National Science Center Project (21KZS203), The Program of Introducing Talents of Discipline to Universities (BP0719039)
  • 摘要: 传统电力电子变换器设计多采用顺序设计法,依赖人工经验。近年来,电力电子自动化设计可通过计算机快速优化设计电力电子系统而备受关注。该文以有源中点钳位(ANPC)逆变器的效率优化设计为例,提出一种基于深度强化学习(DRL)的电力电子自动化设计方法,可实现在变换器设计需求变化时,根据设计目标快速得到最优的设计参数。首先介绍了基于DRL的逆变器效率优化整体框架;然后建立了逆变器的效率模型;接着通过深度确定性策略梯度(DDPG)算法的自学习不断训练智能体,获得了最小化功率损耗的优化策略,该策略能够快速响应设计规格变化提供最大化效率的设计变量;最后,搭建了140 kW的实验样机,实验结果验证了所提方法的有效性,相比于遗传算法和强化学习(RL),实测效率分别提高了0.025 %和0.025 %。
  • 图  1  基于DRL的逆变器效率优化设计框架

    图  2  三相三电平ANPC逆变器的拓扑结构

    图  3  基于DDPG算法的ANPC逆变器效率优化设计框架

    图  4  DDPG算法训练过程中平均累计奖励和平均动作的变化情况

    图  5  不同优化方法之间的功率损耗和效率优化结果对比

    图  6  不同优化方法之间详细的功率损耗对比

    图  7  不同方法之间的优化耗时对比

    图  8  三相三电平ANPC逆变器实验样机

    图  9  不同优化方法的理论效率与实测效率

    表  1  三相三电平ANPC逆变器的系统规格

    参数数值
    额定功率Prated(kW)140
    直流侧输入电压UDC(V)1 200
    直流侧支撑电容CDC(μF)20
    滤波电容CAC(μF)3
    调制度m0.9
    功率因数λ1
    下载: 导出CSV

    表  2  DDPG算法的关键参数

    变量取值超参数数值
    UDC(V)1000~1200奖励系数ϕ1
    I(A)100~120经验回放池容量40000
    fsw(kHz)10~100小批量数目N32
    下载: 导出CSV

    表  3  不同状态下的开关频率优化结果对比

    状态UDC(V)I(A)fsw(kHz)
    遍历法遗传算法RLDRL
    S1100010025.736.530.522.9
    S2120010022.037.029.827.1
    S3110011024.137.631.425.2
    S4100012027.236.833.723.2
    S5120012023.338.232.527.5
    下载: 导出CSV

    表  4  I = 30 A时,相比于遍历法,其他优化方法的各部分功率损耗对比

    UDC(V)方法Pcond(W)Psw(W)Pg(W)Pcop(W)Pcore(W)误差百分比平均值(%)
    400遍历法111.7327.984.9536.3512.44
    遗传算法111.8933.974.9231.2212.457.27
    RL111.4718.814.9951.3112.7015.41
    DRL111.5822.764.9743.3412.477.73
    500遍历法111.6632.174.9642.7815.35
    遗传算法111.9143.054.9234.4915.1511.11
    RL111.5225.974.9851.6015.058.47
    DRL111.5828.574.9747.6315.094.90
    600遍历法111.6035.524.9750.2417.80
    遗传算法111.8850.124.9238.7517.9713.24
    RL111.4828.924.9959.6417.687.70
    DRL111.6939.934.9546.1417.734.29
    下载: 导出CSV

    表  5  实验样机的测试条件

    测试条件输入功率
    Pin(kW)
    直流侧输入电压
    UDC(V)
    负载电阻
    RL(Ω)
    开关频率fsw(kHz)
    遍历法遗传算法RLDRL
    P17.04006.530.635.221.825.0
    P28.84506.529.636.322.527.1
    P311.05006.528.136.723.129.2
    P413.15506.526.836.422.431.3
    下载: 导出CSV
  • [1] BURKART R M and KOLAR J W. Comparative η-ρ-σ Pareto optimization of Si and SiC multilevel dual-active-bridge topologies with wide input voltage range[J]. IEEE Transactions on Power Electronics, 2017, 32(7): 5258–5270. doi: 10.1109/TPEL.2016.2614139
    [2] YU Ruiyang, PONG B M H, LING B W K, et al. Two-stage optimization method for efficient power converter design including light load operation[J]. IEEE Transactions on Power Electronics, 2012, 27(3): 1327–1337. doi: 10.1109/TPEL.2011.2114676
    [3] BUSQUETS-MONGE S, SOREMEKUN G, HEFIZ E, et al. Power converter design optimization[J]. IEEE Industry Applications Magazine, 2004, 10(1): 32–38. doi: 10.1109/MIA.2004.1256250
    [4] 袁立强, 陆子贤, 戴宇轩, 等. 高性能电力电子设计自动化求解器关键因素与解决方法[J]. 中国电机工程学报, 2021, 41(20): 7055–7068. doi: 10.13334/j.0258-8013.pcsee.202413

    YUAN Liqiang, LU Zixian, DAI Yuxuan, et al. Key factors and methodology of high-performance design automation solver for power electronics[J]. Proceedings of the CSEE, 2021, 41(20): 7055–7068. doi: 10.13334/j.0258-8013.pcsee.202413
    [5] DE LEÓN-ALDACO S E, CALLEJA H, and AGUAYO ALQUICIRA J. Metaheuristic optimization methods applied to power converters: A review[J]. IEEE Transactions on Power Electronics, 2015, 30(12): 6791–6803. doi: 10.1109/TPEL.2015.2397311
    [6] BIELA J, KOLAR J W, STUPAR A, et al. Towards virtual prototyping and comprehensive multi-objective optimisation in power electronics[C]. The Power Conversion and Intelligent Motion Conference Europe, Nuremberg, Germany, 2010: 515–538.
    [7] BURKART R M and KOLAR J W. Comparative life cycle cost analysis of Si and SiC PV converter systems based on advanced η-ρ-σ multiobjective optimization techniques[J]. IEEE Transactions on Power Electronics, 2017, 32(6): 4344–4358. doi: 10.1109/TPEL.2016.2599818
    [8] 赵斌, 王刚, 宋婧妍, 等. 基于粒子群算法的LCLC谐振变换器优化设计[J]. 电子与信息学报, 2021, 43(6): 1622–1629. doi: 10.11999/JEIT190337

    ZHAO Bin, WANG Gang, SONG Jingyan, et al. Optimal design method of the LCLC resonant converter based on particle-swarm-optimization algorithm[J]. Journal of Electronics &Information Technology, 2021, 43(6): 1622–1629. doi: 10.11999/JEIT190337
    [9] LI Xinze, ZHANG Xin, LIN Fanfan, et al. Artificial-intelligence-based design for circuit parameters of power converters[J]. IEEE Transactions on Industrial Electronics, 2022, 69(11): 11144–11155. doi: 10.1109/TIE.2021.3088377
    [10] CHEN Xin, QU Guannan, TANG Yujie, et al. Reinforcement learning for selective key applications in power systems: Recent advances and future challenges[J]. IEEE Transactions on Smart Grid, 2022, 13(4): 2935–2958. doi: 10.1109/TSG.2022.3154718
    [11] 陈学松, 杨宜民. 强化学习研究综述[J]. 计算机应用研究, 2010, 27(8): 2834–2838,2844. doi: 10.3969/j.issn.1001-3695.2010.08.006

    CHEN Xuesong and YANG Yimin. Reinforcement learning: Survey of recent work[J]. Application Research of Computers, 2010, 27(8): 2834–2838,2844. doi: 10.3969/j.issn.1001-3695.2010.08.006
    [12] LILLICRAP T P, HUNT J J, PRITZEL A, et al. Continuous control with deep reinforcement learning[C]. The 4th International Conference on Learning Representations, San Diego, America, 2016.
    [13] 乔骥, 王新迎, 张擎, 等. 基于柔性行动器–评判器深度强化学习的电–气综合能源系统优化调度[J]. 中国电机工程学报, 2021, 41(3): 819–832. doi: 10.13334/j.0258-8013.pcsee.201704

    QIAO Ji, WANG Xinying, ZHANG Qing, et al. Optimal dispatch of integrated electricity-gas system with soft actor-critic deep reinforcement learning[J]. Proceedings of the CSEE, 2021, 41(3): 819–832. doi: 10.13334/j.0258-8013.pcsee.201704
    [14] TANG Yuanhong, HU Weihao, CAO Di, et al. Artificial intelligence-aided minimum reactive power control for the DAB converter based on harmonic analysis method[J]. IEEE Transactions on Power Electronics, 2021, 36(9): 9704–9710. doi: 10.1109/TPEL.2021.3059750
    [15] TANG Yuanhong, HU Weihao, ZHANG Bin, et al. Deep reinforcement learning-aided efficiency optimized dual active bridge converter for the distributed generation system[J]. IEEE Transactions on Energy Conversion, 2022, 37(2): 1251–1262. doi: 10.1109/TEC.2021.3126754
    [16] SUTTON R S and BARTO A G. Reinforcement Learning: An Introduction[M]. 2nd ed. Cambridge: MIT Press, 2018: 47–50.
    [17] JIAO Yang and LEE F C. LCL filter design and inductor current ripple analysis for a three-level NPC grid interface converter[J]. IEEE Transactions on Power Electronics, 2015, 30(9): 4659–4668. doi: 10.1109/TPEL.2014.2361907
    [18] WANG Jianing, XUN Yuanwu, LIU Xiaohui, et al. Soft switching circuit of high-frequency active neutral point clamped inverter based on SiC/Si hybrid device[J]. Journal of Power Electronics, 2021, 21(1): 71–84. doi: 10.1007/s43236-020-00166-9
    [19] ELIZONDO D, BARRIOS E L, URSÚA A, et al. Analytical modeling of high-frequency winding loss in round-wire toroidal inductors[J]. IEEE Transactions on Industrial Electronics, 2023, 70(6): 5581–5591. doi: 10.1109/TIE.2022.3192689
    [20] SHIMIZU T and IYASU S. A practical iron loss calculation for AC filter inductors used in PWM inverters[J]. IEEE Transactions on Industrial Electronics, 2009, 56(7): 2600–2609. doi: 10.1109/TIE.2009.2018436
  • 加载中
图(9) / 表(5)
计量
  • 文章访问数:  261
  • HTML全文浏览量:  201
  • PDF下载量:  43
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-08-11
  • 修回日期:  2023-06-07
  • 网络出版日期:  2023-06-12
  • 刊出日期:  2023-09-27

目录

    /

    返回文章
    返回