高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于图信号处理的频控阵雷达目标定位方法

谢宁波 欧阳缮 廖可非 王海涛 蒋俊正

谢宁波, 欧阳缮, 廖可非, 王海涛, 蒋俊正. 基于图信号处理的频控阵雷达目标定位方法[J]. 电子与信息学报, 2023, 45(5): 1559-1566. doi: 10.11999/JEIT220970
引用本文: 谢宁波, 欧阳缮, 廖可非, 王海涛, 蒋俊正. 基于图信号处理的频控阵雷达目标定位方法[J]. 电子与信息学报, 2023, 45(5): 1559-1566. doi: 10.11999/JEIT220970
XIE Ningbo, OUYANG Shan, LIAO Kefei, WANG Haitao, JIANG Junzheng. A Novel Target Localization Method for Frequency Diverse Array Based on Graph Signal Processing[J]. Journal of Electronics & Information Technology, 2023, 45(5): 1559-1566. doi: 10.11999/JEIT220970
Citation: XIE Ningbo, OUYANG Shan, LIAO Kefei, WANG Haitao, JIANG Junzheng. A Novel Target Localization Method for Frequency Diverse Array Based on Graph Signal Processing[J]. Journal of Electronics & Information Technology, 2023, 45(5): 1559-1566. doi: 10.11999/JEIT220970

基于图信号处理的频控阵雷达目标定位方法

doi: 10.11999/JEIT220970
基金项目: 国家自然科学基金(61871425),广西创新驱动发展专项(桂科AA21077008),广西无线宽带通信与信息处理重点实验室主任基金(GXKL06170110),广西八桂学者专项(2019A51)
详细信息
    作者简介:

    谢宁波:男,博士生,研究方向为阵列信号处理、雷达信号处理

    欧阳缮:男,教授,研究方向为雷达信号处理、通信信号处理

    廖可非:男,副教授,研究方向为雷达成像、RCS测量、认知雷达

    王海涛:男,高级工程师,研究方向为雷达信号处理

    蒋俊正:男,教授,研究方向为图信号处理理论与算法、分布式信号处理理论与算法、大规模传感器网络数据处理

    通讯作者:

    欧阳缮 hmoysh@guet.edu.cn

  • 中图分类号: TN958

A Novel Target Localization Method for Frequency Diverse Array Based on Graph Signal Processing

Funds: The National Natural Science Foundation of China (61871425), Guangxi Special Fund Project for Innovation-driven Development (GuikeAA21077008), The Fund of Guangxi Key Laboratory of Wireless Wideband Communication and Signal Processing (GXKL06170110), The Guangxi Bagui Scholar Foundation (2019A51)
  • 摘要: 针对现代雷达应用对目标高精度测角和测距的需求,该文将图信号处理(GSP)应用于频控阵(FDA)雷达目标定位中,提出一种基于图信号处理的频控阵雷达目标定位新方法。首先,基于频控阵雷达几何模型及回波数据间的信号关联性构建回波数据的图信号模型,进而利用图傅里叶变换对上述图信号作图谱分解,构建2维谱峰搜索优化函数,最终有效获得目标的方位角-距离联合估计。仿真实验结果表明,该算法能够正确估计出目标的方位角和距离信息;在相同仿真条件下,算法的估计精度优于同类算法且提升了对弱目标的定位性能。
  • 图  1  单基地频控阵雷达阵列结构示意图及信号处理流图

    图  2  算法图信号模型及方位角-距离联合估计2维网格搜索示意图

    图  3  本文算法下的定位估计仿真结果

    图  4  不同算法下定位精度性能比较

    表  1  实验仿真参数列表

    载频频率增量最大无模糊探测距离阵元数阵元间距快拍数目标位置扫描精度信噪比
    参数值5 GHz10 kHz15 km110.015 m128(45°, 10 km)角度维0.1°距离维0.5 m10 dB
    下载: 导出CSV

    表  2  各算法仿真平均耗时比较(s)

    2维MUSICDPGSPRFGSP
    仿真平均耗时2.19028.19863.6768
    下载: 导出CSV
  • [1] 丁鹭飞, 耿富录, 陈建春. 雷达原理[M]. 4版. 北京: 电子工业出版, 2009: 8–13.

    DING Lufei, GENG Fulu, and CHEN Jianchun. Principle of Radar[M]. 4th ed. Beijing: Publishing House of Electronics Industry, 2009: 8–13.
    [2] VAN TREES H L. Optimum Array Processing: Part IV of Detection, Estimation and Modulation Theory[M]. New York: John Wiley & Sons, 2002: 204–207.
    [3] ANTONIK P, WICKS M C, GRIFFITHS H D, et al. Frequency diverse array radars[C]. 2006 IEEE Conference on Radar, Verona, USA, 2006: 215–217.
    [4] 王文钦, 邵怀宗, 陈慧. 频控阵雷达: 概念、原理与应用[J]. 电子与信息学报, 2016, 38(4): 1000–1011. doi: 10.11999/JEIT151235

    WANG Wenqin, SHAO Huaizong, and CHEN Hui. Frequency diverse array radar: Concept, principle and application[J]. Journal of Electronics &Information Technology, 2016, 38(4): 1000–1011. doi: 10.11999/JEIT151235
    [5] WANG Wenqin, SO H C, and SHAO Huaizong. Nonuniform frequency diverse array for range-angle imaging of targets[J]. IEEE Sensors Journal, 2014, 14(8): 2469–2476. doi: 10.1109/JSEN.2014.2304720
    [6] LIU Yimin, RUAN Hang, WANG Lei, et al. The random frequency diverse array: A new antenna structure for uncoupled direction-range indication in active sensing[J]. IEEE Journal of Selected Topics in Signal Processing, 2017, 11(2): 295–308. doi: 10.1109/JSTSP.2016.2627183
    [7] WANG Wenqin and SHAO Huaizong. Range-angle localization of targets by a double-pulse frequency diverse array radar[J]. IEEE Journal of Selected Topics in Signal Processing, 2014, 8(1): 106–114. doi: 10.1109/JSTSP.2013.2285528
    [8] ORTEGA A, FROSSARD P, KOVAČEVIĆ J, et al. Graph signal processing: Overview, challenges, and applications[J]. Proceedings of the IEEE, 2018, 106(5): 808–828. doi: 10.1109/JPROC.2018.2820126
    [9] SANDRYHAILA A and MOURA J M F. Discrete signal processing on graphs[J]. IEEE Transactions on Signal Processing, 2013, 61(7): 1644–1656. doi: 10.1109/TSP.2013.2238935
    [10] MOREIRA L A S, RAMOS A L L, DE CAMPOS M L R, et al. A graph signal processing approach to direction of arrival estimation[C]. 2019 27th European Signal Processing Conference (EUSIPCO), A Coruna, Spain, 2019: 1–5.
    [11] PROUDLER I K, STANKOVIC V, and WEISS S. Narrowband angle of arrival estimation exploiting graph topology and graph signals[C]. 2020 Sensor Signal Processing for Defence Conference (SSPD), Edinburgh, UK, 2020: 1–5.
    [12] ALCANTARA E, ATLAS L, and ABADI S. Direction-of-arrival estimation using signal processing on graphs[C]. 2021 IEEE Statistical Signal Processing Workshop (SSP), Rio de Janeiro, Brazil, 2021: 1–5.
    [13] XIAO Peng and YANG Jianmin. A graph-based narrowband matched-field source localization method[J]. JASA Express Letters, 2021, 1(12): 124803. doi: 10.1121/10.0009060
    [14] WANG Junxiong and PAN Xiang. The signal feature extraction of graph Fourier transform on the constructed graph[C]. 2021 6th International Conference on Communication, Image and Signal Processing (CCISP), Chengdu, China, 2021: 379–383.
    [15] LIAO Kefei, YU Zerui, XIE Ningbo, et al. Joint estimation of azimuth and distance for far-field multi targets based on graph signal processing[J]. Remote Sensing, 2022, 14(5): 1110. doi: 10.3390/rs14051110
    [16] JONES A M and RIGLING B D. Planar frequency diverse array receiver architecture[C]. 2012 IEEE Radar Conference, Atlanta, USA, 2012: 145–150.
    [17] KRIM H and VIBERG M. Two decades of array signal processing research: The parametric approach[J]. IEEE Signal Processing Magazine, 1996, 13(4): 67–94. doi: 10.1109/79.526899
    [18] CUI Can, XU Jian, GUI Ronghua, et al. Search-free DOD, DOA and range estimation for bistatic FDA-MIMO radar[J]. IEEE Access, 2018, 6: 15431–15445. doi: 10.1109/ACCESS.2018.2816780
  • 加载中
图(4) / 表(2)
计量
  • 文章访问数:  674
  • HTML全文浏览量:  242
  • PDF下载量:  178
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-07-11
  • 修回日期:  2022-11-28
  • 网络出版日期:  2022-11-30
  • 刊出日期:  2023-05-10

目录

    /

    返回文章
    返回