高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于信道指纹的毫米波MIMO系统身份欺骗攻击检测方案

杨立君 李明航 陆海涛 郭林

杨立君, 李明航, 陆海涛, 郭林. 基于信道指纹的毫米波MIMO系统身份欺骗攻击检测方案[J]. 电子与信息学报, 2023, 45(12): 4228-4234. doi: 10.11999/JEIT220934
引用本文: 杨立君, 李明航, 陆海涛, 郭林. 基于信道指纹的毫米波MIMO系统身份欺骗攻击检测方案[J]. 电子与信息学报, 2023, 45(12): 4228-4234. doi: 10.11999/JEIT220934
YANG Lijun, LI Minghang, LU Haitao, GUO Lin. Spoofing Attack Detection Scheme Based on Channel Fingerprint for Millimeter Wave MIMO System[J]. Journal of Electronics & Information Technology, 2023, 45(12): 4228-4234. doi: 10.11999/JEIT220934
Citation: YANG Lijun, LI Minghang, LU Haitao, GUO Lin. Spoofing Attack Detection Scheme Based on Channel Fingerprint for Millimeter Wave MIMO System[J]. Journal of Electronics & Information Technology, 2023, 45(12): 4228-4234. doi: 10.11999/JEIT220934

基于信道指纹的毫米波MIMO系统身份欺骗攻击检测方案

doi: 10.11999/JEIT220934
基金项目: 中兴通讯产学研(2023ZTE08-02),南京邮电大学校级自然科学基金(NY222132),中国博士后基金(2017M621798),江苏省高等学校自然科学研究项目(19KJB510048),江苏省研究生科研与实践创新计划项目(SJCX21_0300)
详细信息
    作者简介:

    杨立君:女,讲师,研究方向为无线网络与信息安全

    李明航:男,硕士生,研究方向为物理层身份认证

    陆海涛:男,高级工程师,研究方向为5G/B5G/6G通信安全技术

    郭林:男,讲师,研究方向为MIMO天线系统及安全技术

    通讯作者:

    郭林 guolin@njupt.edu.com

  • 中图分类号: TN928

Spoofing Attack Detection Scheme Based on Channel Fingerprint for Millimeter Wave MIMO System

Funds: ZTE Industry-University-Research Fund (2023ZTE08-02), The Natural Science Foundation of Nanjing University of Posts and Telecommunications (NY222132), The National Post-doctoral Fundation (2017M621798), The Universities Natural Science Research Project of Jiangsu Province (19KJB510048), The Postgraduate Research & Practice Innovation Program of Jiangsu Province (SJCX21_0300)
  • 摘要: 针对毫米波多输入输出系统(MIMO)中的身份欺骗攻击问题,该文提出一种基于信道指纹的攻击检测方案。在波束域中,毫米波信道图样呈现波束的稀疏性和高方向特性,且这种波束域特性与终端位置有极高的相关性。该文将该波束域信道图样作为一种信道指纹,提出了一种基于信道指纹的身份欺骗攻击检测方案,将欺骗攻击中的终端身份认证问题建模成对其信道指纹的二分类问题,并使用基于监督学习的支持向量机算法求解该分类问题。为获得好的分类效果,基于对信道指纹的数值分析,比较了皮尔逊相关系数、余弦相似度、相关矩阵距离、欧氏距离等相似度指标。根据比较结果,选择最优的指标作为分类特征训练分类模型。仿真结果表明,即使在低信噪比条件下,该方案仍具有高认证准确性和鲁棒性。与现有相关机制相比,攻击检测精度显著提高。
  • 图  1  系统模型

    图  2  原始矩阵与波束域表示对比

    图  3  Alice与Eve波束域对比(不同位置处)

    图  4  Alice与Eve波束域数值对比

    图  5  相似度差值

    图  6  准确率对比

    图  7  ROC曲线

    图  8  不同天线数量以及移动速度下的认证准确率

    表  1  信号仿真参数设置

    信号参数频率带宽天线类型天线数目
    数值73 GHz800 MHzULA64×64
    下载: 导出CSV

    表  2  用户仿真参数设置

    用户参数移动距离速度轨迹采样间隔
    数值40 m1 m/s图10.1 次/s
    下载: 导出CSV
  • [1] SEKER C, GÜNESER M T, and OZTURK T. A review of millimeter wave communication for 5G[C]. The 2nd International Symposium on Multidisciplinary Studies and Innovative Technologies (ISMSIT), Ankara, Turkey, 2018: 1–5.
    [2] HEATH R W, GONZÁLEZ-PRELCIC N, RANGAN S, et al. An overview of signal processing techniques for millimeter wave MIMO systems[J]. IEEE Journal of Selected Topics in Signal Processing, 2016, 10(3): 436–453. doi: 10.1109/JSTSP.2016.2523924
    [3] WANG Ning, LI Weiwei, WANG Pu, et al. Physical layer authentication for 5G communications: Opportunities and road ahead[J]. IEEE Network, 2020, 34(6): 198–204. doi: 10.1109/MNET.011.2000122
    [4] YILMAZ M H and ARSLAN H. A survey: Spoofing attacks in physical layer security[C]. The IEEE 40th Local Computer Networks Conference Workshops (LCN Workshops), Clearwater Beach, USA, 2015: 812–817.
    [5] MENEZES A J, VAN OORSCHOT P C, and VANSTONE S A. Handbook of Applied Cryptography[M]. Boca Raton: CRC Press, 1996.
    [6] PAN Fei, WEN Hong, LIAO Runfa, et al. Physical layer authentication based on channel information and machine learning[C]. The 2017 IEEE Conference on Communications and Network Security (CNS), Las Vegas, USA, 2017: 364–365.
    [7] AHMADPOUR D and KABIRI P. Detecting forged management frames with spoofed addresses in IEEE 802.11 networks using received signal strength indicator[J]. Iran Journal of Computer Science, 2020, 3(3): 137–143. doi: 10.1007/s42044-020-00053-3
    [8] GALTIER F, CAYRE R, AURIOL G, et al. A PSD-based fingerprinting approach to detect IoT device spoofing[C]. The IEEE 25th Pacific Rim International Symposium on Dependable Computing (PRDC), Perth, Australia, 2020: 40–49.
    [9] ALAM J and KENNY P. Spoofing detection employing infinite impulse response—constant Q transform-based feature representations[C]. The 25th European Signal Processing Conference (EUSIPCO), Kos, Greece, 2017: 101–105.
    [10] SAYEED A M. Deconstructing multiantenna fading channels[J]. IEEE Transactions on Signal Processing, 2002, 50(10): 2563–2579. doi: 10.1109/TSP.2002.803324
    [11] TANG Jie, XU Aidong, JIANG Yixin, et al. MmWave MIMO physical layer authentication by using channel sparsity[C]. The 2020 IEEE International Conference on Artificial Intelligence and Information Systems (ICAIIS), Dalian, China, 2020: 221–224.
    [12] LI Weiwei, WANG Ning, JIAO Long, et al. Physical layer spoofing attack detection in MmWave massive MIMO 5G networks[J]. IEEE Access, 2021, 9: 60419–60432. doi: 10.1109/ACCESS.2021.3073115
    [13] WANG Ning, JIAO Long, WANG Pu, et al. Exploiting beam features for spoofing attack detection in mmWave 60-GHz IEEE 802.11ad networks[J]. IEEE Transactions on Wireless Communications, 2021, 20(5): 3321–3335. doi: 10.1109/TWC.2021.3049160
    [14] BALAKRISHNAN S, GUPTA S, BHUYAN A, et al. Physical layer identification based on spatial–temporal beam features for millimeter-wave wireless networks[J]. IEEE Transactions on Information Forensics and Security, 2020, 15: 1831–1845. doi: 10.1109/TIFS.2019.2948283
    [15] HEMADEH I A, SATYANARAYANA K, EL-HAJJAR M, et al. Millimeter-wave communications: Physical channel models, design considerations, antenna constructions, and link-budget[J]. IEEE Communications Surveys & Tutorials, 2018, 20(2): 870–913. doi: 10.1109/COMST.2017.2783541
    [16] JU Shihao and RAPPAPORT T S. Millimeter-wave extended NYUSIM channel model for spatial consistency[C]. The 2018 IEEE Global Communications Conference (GLOBECOM), Abu Dhabi, United Arab Emirates, 2018: 1–6.
    [17] LIM Y G, CHO Y J, SIM M S, et al. Map-based millimeter-wave channel models: An overview, guidelines, and data[EB/OL]. http://arxiv.org/abs/1711.09052, 2017.
    [18] GOWER J C and LEGENDRE P. Metric and Euclidean properties of dissimilarity coefficients[J]. Journal of Classification, 1986, 3(1): 5–48. doi: 10.1007/BF01896809
    [19] 卜凡鹏, 陈俊艺, 张琪祁, 等. 一种基于双层迭代聚类分析的负荷模式可控精细化识别方法[J]. 电网技术, 2018, 42(3): 903–910. doi: 10.13335/j.1000-3673.pst.2017.1397

    BU Fanpeng, CHEN Junyi, ZHANG Qiqi, et al. A controllable refined recognition method of electrical load pattern based on bilayer iterative clustering analysis[J]. Power System Technology, 2018, 42(3): 903–910. doi: 10.13335/j.1000-3673.pst.2017.1397
    [20] YOU Yang, DEMMEL J, CZECHOWSKI K, et al. CA-SVM: Communication-avoiding support vector machines on distributed systems[C]. The 2015 IEEE International Parallel and Distributed Processing Symposium, Hyderabad, India, 2015: 847–859.
    [21] SINHASHTHITA W and JEARANAITANAKIJ K. Improving KNN algorithm based on weighted attributes by Pearson correlation coefficient and PSO fine tuning[C]. The 5th International Conference on Information Technology (InCIT), Chonburi, Thailand, 2020: 27–32.
    [22] XIAO L, GREENSTEIN L, MANDAYAM N, et al. Fingerprints in the ether: Using the physical layer for wireless authentication[C]. The 2007 IEEE International Conference on Communications, Glasgow, UK, 2007: 4646–4651.
  • 加载中
图(8) / 表(2)
计量
  • 文章访问数:  506
  • HTML全文浏览量:  313
  • PDF下载量:  147
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-07-08
  • 修回日期:  2023-03-30
  • 网络出版日期:  2023-03-31
  • 刊出日期:  2023-12-26

目录

    /

    返回文章
    返回