高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于OFDM的无线信号与电能反向同步传输方法

靖永志 鲁林海 冯伟 王森 孙希聪

靖永志, 鲁林海, 冯伟, 王森, 孙希聪. 基于OFDM的无线信号与电能反向同步传输方法[J]. 电子与信息学报, 2023, 45(8): 2856-2866. doi: 10.11999/JEIT220929
引用本文: 靖永志, 鲁林海, 冯伟, 王森, 孙希聪. 基于OFDM的无线信号与电能反向同步传输方法[J]. 电子与信息学报, 2023, 45(8): 2856-2866. doi: 10.11999/JEIT220929
JING Yongzhi, LU Linhai, FENG Wei, WANG Sen, SUN Xicong. Reverse Simultaneous Wireless Data / Power Transfer Method Based on OFDM[J]. Journal of Electronics & Information Technology, 2023, 45(8): 2856-2866. doi: 10.11999/JEIT220929
Citation: JING Yongzhi, LU Linhai, FENG Wei, WANG Sen, SUN Xicong. Reverse Simultaneous Wireless Data / Power Transfer Method Based on OFDM[J]. Journal of Electronics & Information Technology, 2023, 45(8): 2856-2866. doi: 10.11999/JEIT220929

基于OFDM的无线信号与电能反向同步传输方法

doi: 10.11999/JEIT220929
基金项目: 国家自然科学基金(52077183)
详细信息
    作者简介:

    靖永志:男,博士,副研究员,研究方向为无线信号与电能传输、信号处理与检测技术等

    鲁林海:男,硕士生,研究方向为无线信号与电能传输等

    冯伟:男,硕士生,研究方向为无线信号与电能传输等

    王森:男,硕士生,研究方向为无线信号与电能传输等

    孙希聪:男,硕士生,研究方向为无线信号与电能传输等

    通讯作者:

    靖永志 jingyongzhi@swjtu.edu.cn

  • 中图分类号: TN911.7; TN86

Reverse Simultaneous Wireless Data / Power Transfer Method Based on OFDM

Funds: The National Natural Science Foundation of China (52077183)
  • 摘要: 无线电能传输系统的稳定运行离不开信息传输技术的实现,该文针对无线信号与电能共享通道传输时存在耦合干扰及频谱利用率低的问题,提出一种基于正交频分复用技术(OFDM)的信号与电能反向同步传输新方法。该方法将电能载波等效为搭载全1信息的信号载波,采用OFDM技术实现信号的同步解耦与高速可靠传输时,即可减少电能传输过程对信号传输过程产生的串扰。电能通道采用串联谐振(S/LCC)补偿拓扑结构,使负载在一定范围内变化时输出电压稳定。松耦合变压器作为电能和信号传输的共同通道,可以同时、反向传输信号与电能两种不同频率的载波。首先介绍了系统的结构和OFDM基本原理;其次,对系统进行数学建模,分析研究信号与电能的传输特性;在此基础上,给出了信号调制与解调的设计方法。最后搭建电能传输功率为20 W、信号传输速率为85 kbit/s的实验平台,验证了所提方法的正确性。
  • 图  1  系统结构

    图  2  FDM与OFDM频谱分布

    图  3  OFDM子载波频谱图

    图  4  信号与电能反向同步传输系统电路

    图  5  电能传输回路等效电路

    图  6  信号传输回路等效电路

    图  7  载波传输模型

    图  8  系统调制原理

    图  9  系统解调原理

    图  10  信号与电能同步传输系统实验平台

    图  11  不同负载时的输出电压

    图  12  电压波形对比

    图  13  信号解调过程波形

    表  1  实验参数

    参数数值参数数值
    线圈内径(cm)2L1, L2(μH)29
    线圈外径(cm)5.5M(μH)15
    线圈间隙(cm)1C1(nF)88
    RL(Ω)28.8C2(nF)140
    Cf(nF)233C4, C5(nF)22
    Lf(μH)15RD(kΩ)1
    L5, L6(μH)10fp(kHz)85
    L3, L4(μH)10fs( kHz)340
    下载: 导出CSV

    表  2  性能比较

    参数本文文献[26]文献[27]文献[1]文献[4]
    电能传输功率(W)20202086.40.126
    信号传输速率(bit/s)85k10M15M80k1M
    调制/解调方式OFDMOFDMOFDMFSKFSK
    电能载波频率(kHz)8544.0943.8382
    信号载波频率(kHz)3402000~280002000~280004000~60002000~4000
    子载波间隔(kHz)8520002000
    电能-信号载波频率间隔(kHz)255195619563918
    频带利用率(bit/(s·Hz))10.380.580.040.5
    信道数1>>1>>122
    下载: 导出CSV
  • [1] 王佩月, 左志平, 孙跃, 等. 基于双侧LCC的全双工无线电能传输能量信号并行传输系统[J]. 电工技术学报, 2021, 36(23): 4981–4991. doi: 10.19595/j.cnki.1000-6753.tces.200634

    WANG Peiyue, ZUO Zhiping, SUN Yue, et al. Full-duplex simultaneous wireless power and data transfer system based on double-sided LCC topology[J]. Transactions of China Electrotechnical Society, 2021, 36(23): 4981–4991. doi: 10.19595/j.cnki.1000-6753.tces.200634
    [2] 吴丽君, 李冠西, 张朱浩伯, 等. 一种具有恒流恒压输出自切换特性的电动汽车无线电能传输系统拓扑[J]. 电工技术学报, 2020, 35(18): 3781–3790. doi: 10.19595/j.cnki.1000-6753.tces.191051

    WU Lijun, LI Guanxi, ZHANG Zhuhaobo, et al. A wireless power transfer system topology with automatic switching characteristics of constant current and constant voltage output for electric vehicle charging[J]. Transactions of China Electrotechnical Society, 2020, 35(18): 3781–3790. doi: 10.19595/j.cnki.1000-6753.tces.191051
    [3] 范兴明, 莫小勇, 张鑫. 无线电能传输技术的研究现状与应用[J]. 中国电机工程学报, 2015, 35(10): 2584–2600. doi: 10.13334/j.0258-8013.pcsee.2015.10.026

    FAN Xingming, MO Xiaoyong, and ZHANG Xin. Research status and application of wireless power transmission technology[J]. Proceedings of the CSEE, 2015, 35(10): 2584–2600. doi: 10.13334/j.0258-8013.pcsee.2015.10.026
    [4] AHMADI M M and GHANDI S. A class-E power amplifier with wideband FSK modulation for inductive power and data transmission to medical implants[J]. IEEE Sensors Journal, 2018, 18(17): 7242–7252. doi: 10.1109/JSEN.2018.2851605
    [5] HUI S Y. Planar wireless charging technology for portable electronic products and Qi[J]. Proceedings of the IEEE, 2013, 101(6): 1290–1301. doi: 10.1109/JPROC.2013.2246531
    [6] 蔡进, 吴旭升, 胡风革, 等. 双边LCC感应耦合式无线电能传输系统的稳定性分析与效率优化设计[J]. 电工技术学报, 2020, 35(S2): 355–362. doi: 10.19595/j.cnki.1000-6753.tces.191491

    CAI Jin, WU Xusheng, HU Fengge, et al. Stability analysis and efficiency optimization design of bilateral LCC inductively coupled power transmission system[J]. Transactions of China Electrotechnical Society, 2020, 35(S2): 355–362. doi: 10.19595/j.cnki.1000-6753.tces.191491
    [7] 傅凌焜. 可充电传感器网络能量优化研究[D]. [博士论文], 浙江大学, 2015.

    FU Lingkun. Research on energy optimization in wireless rechargeable sensor networks[D]. [Ph. D. dissertation], Zhejiang University, 2015.
    [8] 陈凯楠, 蒋烨, 檀添, 等. 轨道交通350kW大功率无线电能传输系统研究[J]. 电工技术学报, 2022, 37(10): 2411–2421,2445. doi: 10.19595/j.cnki.1000-6753.tces.211580

    CHEN Kainan, JIANG Ye, TAN Tian, et al. Research on 350 kW high power wireless power transfer system for rail transit[J]. Transactions of China Electrotechnical Society, 2022, 37(10): 2411–2421,2445. doi: 10.19595/j.cnki.1000-6753.tces.211580
    [9] 赵进国, 赵晋斌, 张俊伟, 等. 无线电能传输系统中有源阻抗匹配网络断续电流模式最大效率跟踪研究[J]. 电工技术学报, 2022, 37(1): 24–35. doi: 10.19595/j.cnki.1000-6753.tces.211179

    ZHAO Jinguo, ZHAO Jinbin, ZHANG Junwei, et al. Maximum efficiency tracking study of active impedance matching network discontinous current mode in wireless power transfer system[J]. Transactions of China Electrotechnical Society, 2022, 37(1): 24–35. doi: 10.19595/j.cnki.1000-6753.tces.211179
    [10] 程志远, 陈坤, 李东东, 等. 旋转式无线充电系统偏移特性研究[J]. 电工技术学报, 2021, 36(22): 4648–4657. doi: 10.19595/j.cnki.1000-6753.tces.210681

    CHENG Zhiyuan, CHEN Kun, LI Dongdong, et al. Research on offset characteristics of rotary wireless charging system[J]. Transactions of China Electrotechnical Society, 2021, 36(22): 4648–4657. doi: 10.19595/j.cnki.1000-6753.tces.210681
    [11] 孙跃, 闫鹏旭, 王智慧, 等. ICPT系统电能信号共享通道实时同步传输方法研究[J]. 中国电机工程学报, 2016, 36(19): 5172–5178. doi: 10.13334/j.0258-8013.pcsee.152071

    SUN Yue, YAN Pengxu, WANG Zhihui, et al. Research on real-time and synchronization transmission of power and data via a shared channel in inductive coupling power transfer systems[J]. Proceedings of the CSEE, 2016, 36(19): 5172–5178. doi: 10.13334/j.0258-8013.pcsee.152071
    [12] JU Xinglong, DONG Lei, HUANG Xiaojiang, et al. Switching technique for inductive power transfer at high-Q regimes[J]. IEEE Transactions on Industrial Electronics, 2015, 62(4): 2164–2173. doi: 10.1109/TIE.2014.2361806
    [13] THRIMAWITHANA D J, MADAWALA U K, and NEATH M. A synchronization technique for bidirectional IPT systems[J]. IEEE Transactions on Industrial Electronics, 2013, 60(1): 301–309. doi: 10.1109/TIE.2011.2174536
    [14] ZHANG Zhen, CHAU K T, QIU Chun, et al. Energy encryption for wireless power transfer[J]. IEEE Transactions on Power Electronics, 2015, 30(9): 5237–5246. doi: 10.1109/TPEL.2014.2363686
    [15] 陈毅. 基于磁耦合谐振的无线能量与信息同步传输系统设计与实现[D]. [硕士论文], 重庆大学, 2016.

    CHEN Yi. Design and implementation of wireless power and information synchronous transmission system based on magnetic resonance coupling[D]. [Master dissertation], Chongqing University, 2016.
    [16] BIELER T, PERROTTET M, NGUYEN V, et al. Contactless power and information transmission[J]. IEEE Transactions on Industry Applications, 2002, 38(5): 1266–1272. doi: 10.1109/TIA.2002.803017
    [17] HUANG Chihcheng; LIN Chunliang; WU Yuankang. Simultaneous wireless power/data transfer for electric vehicle charging[J]. IEEE Transactions on Industrial Electronics, 2017, 64(1): 682–690. doi: 10.1109/TIE.2016.2608765
    [18] 夏晨阳, 李玉华, 雷轲, 等. 变负载ICPT系统电能与信号反向同步传输方法[J]. 中国电机工程学报, 2017, 37(6): 1857–1866. doi: 10.13334/j.0258-8013.pcsee.160615

    XIA Chenyang, LI Yuhua, LEI Ke, et al. Study on power forward and signal reverse transmission in load changing ICPT system[J]. Proceedings of the CSEE, 2017, 37(6): 1857–1866. doi: 10.13334/j.0258-8013.pcsee.160615
    [19] 尹杰, 袁荣湘, 郭丕龙. 基于双频的能量信号无线同步传输研究[J]. 电子世界, 2019(15): 124–126. doi: 10.19353/j.cnki.dzsj.2019.15.065

    YIN Jie, YUAN Rongxiang, and GUO Pilong. Based on dual frequency energy signal wireless synchronization transmission study[J]. Electronics World, 2019(15): 124–126. doi: 10.19353/j.cnki.dzsj.2019.15.065
    [20] YAO Yousu, WANG Yijie, LIU Xiaosheng, et al. Analysis, design, and implementation of a wireless power and data transmission system using capacitive coupling and double-sided LCC compensation topology[J]. IEEE Transactions on Industry Applications, 2019, 55(1): 541–551. doi: 10.1109/TIA.2018.2869120
    [21] SUN Yue, YAN Pengxu, WANG Zhihui, et al. The parallel transmission of power and data with the shared channel for an inductive power transfer system[J]. IEEE Transactions on Power Electronics, 2016, 31(8): 5495–5502. doi: 10.1109/TPEL.2015.2497739
    [22] WU Jiande, ZHAO Chongwen, LIN Zhengyu, et al. Wireless power and data transfer via a common inductive link using frequency division multiplexing[J]. IEEE Transactions on Industrial Electronics, 2015, 62(12): 7810–7820. doi: 10.1109/TIE.2015.2453934
    [23] JI Li, WANG Lifang, LIAO Chenglin, et al. Simultaneous wireless power and bidirectional information transmission with a single-coil, dual-resonant structure[J]. IEEE Transactions on Industrial Electronics, 2019, 66(5): 4013–4022. doi: 10.1109/TIE.2018.2831196
    [24] 刘梦雨. 感应式无线能量与信号复合传输技术研究[D]. [硕士论文], 哈尔滨工业大学, 2018.

    LIU Mengyu. Research on inductively coupled wireless power and data composite transfer technology[D]. [Master dissertation], Harbin Institute of Technology, 2018.
    [25] 戴欣, 杜人杰, 唐春森, 等. 基于2FSK的ICPT系统高速信号传输方法[J]. 西南交通大学学报, 2013, 48(5): 892–897. doi: 10.3969/j.issn.0258-2724.2013.05.017

    DAI Xin, DU Renjie, TANG Chunsen, et al. A 2FSK-based high-speed signal transmission method for ICPT system[J]. Journal of Southwest Jiaotong University, 2013, 48(5): 892–897. doi: 10.3969/j.issn.0258-2724.2013.05.017
    [26] 唐春森, 邓棚亓, 李亚超, 等. 基于部分能量线圈和OFDM技术的ICPT系统高速数据传输方法[J]. 电源学报, 2019, 17(4): 80–86. doi: 10.13234/j.issn.2095-2805.2019.4.80

    TANG Chunsen, DENG Pengqi, LI Yachao, et al. High-speed data transmission method for ICPT system based on partial energy coil and OFDM technology[J]. Journal of Power Supply, 2019, 17(4): 80–86. doi: 10.13234/j.issn.2095-2805.2019.4.80
    [27] 李亚超. 基于部分能量耦合线圈的ICPT系统高速数据传输技术研究及实现[D]. [硕士论文], 重庆大学, 2017.

    LI Yachao. Research and implementation of high-speed data transmission technology in ICPT system based on partial coupling coil[D]. [Master dissertation], Chongqing University, 2017.
    [28] WEINSTEIN S and EBERT P. Data transmission by frequency-division multiplexing using the discrete Fourier transform[J]. IEEE Transactions on Communication Technology, 1971, 19(5): 628–634. doi: 10.1109/TCOM.1971.1090705
    [29] NG D W K, LO E S, and SCHOBER R. Wireless information and power transfer: Energy efficiency optimization in OFDMA systems[J]. IEEE Transactions on Wireless Communications, 2013, 12(12): 6352–6370. doi: 10.1109/TWC.2013.103113.130470
    [30] 霍凯, 赵晶晶. OFDM新体制雷达研究现状与发展趋势[J]. 电子与信息学报, 2015, 37(11): 2776–2789. doi: 10.11999/JEIT150335

    HUO Kai and ZHAO Jingjing. The development and prospect of the new OFDM radar[J]. Journal of Electronics &Information Technology, 2015, 37(11): 2776–2789. doi: 10.11999/JEIT150335
    [31] 刘毅, 吴炯, 杨普, 等. 面向OFDM的同时同频全双工双向高谱效中继方案[J]. 电子与信息学报, 2019, 41(2): 402–408. doi: 10.11999/JEIT180451

    LIU Yi, WU Jiong, YANG Pu, et al. High spectrum efficiency full-duplex two-way relay scheme for OFDM[J]. Journal of Electronics &Information Technology, 2019, 41(2): 402–408. doi: 10.11999/JEIT180451
    [32] 张潇锐. 基于S/LCC补偿拓扑的无线电能传输技术研究[D]. [硕士论文], 哈尔滨工业大学, 2018.

    ZHANG Xiaorui. Research on wireless power transfer technology with S/LCC compensation topology[D]. [Master dissertation], Harbin Institute of Technology, 2018.
  • 加载中
图(13) / 表(2)
计量
  • 文章访问数:  264
  • HTML全文浏览量:  230
  • PDF下载量:  53
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-07-07
  • 修回日期:  2022-11-10
  • 录用日期:  2022-12-20
  • 网络出版日期:  2022-12-22
  • 刊出日期:  2023-08-21

目录

    /

    返回文章
    返回