高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

一种增量部署太赫兹链路的巨型近地轨道星座网络路由算法

叶进 陈贵豪 韦姿蓉 单源超 黄家玮

叶进, 陈贵豪, 韦姿蓉, 单源超, 黄家玮. 一种增量部署太赫兹链路的巨型近地轨道星座网络路由算法[J]. 电子与信息学报, 2023, 45(8): 2876-2884. doi: 10.11999/JEIT220915
引用本文: 叶进, 陈贵豪, 韦姿蓉, 单源超, 黄家玮. 一种增量部署太赫兹链路的巨型近地轨道星座网络路由算法[J]. 电子与信息学报, 2023, 45(8): 2876-2884. doi: 10.11999/JEIT220915
YE Jin, CHEN Guihao, WEI Zirong, SHAN Yuanchao, HUANG Jiawei. A Routing Algorithm on Low Earth Orbit Mega-constellation Network with Iincremental Deployment of Terahertz Links[J]. Journal of Electronics & Information Technology, 2023, 45(8): 2876-2884. doi: 10.11999/JEIT220915
Citation: YE Jin, CHEN Guihao, WEI Zirong, SHAN Yuanchao, HUANG Jiawei. A Routing Algorithm on Low Earth Orbit Mega-constellation Network with Iincremental Deployment of Terahertz Links[J]. Journal of Electronics & Information Technology, 2023, 45(8): 2876-2884. doi: 10.11999/JEIT220915

一种增量部署太赫兹链路的巨型近地轨道星座网络路由算法

doi: 10.11999/JEIT220915
基金项目: 国家自然科学基金(62132022, U22A2021)
详细信息
    作者简介:

    叶进:女,博士,教授,研究方向为网络协议优化

    陈贵豪:男,硕士,研究方向为网络协议优化

    韦姿蓉:女,硕士生,研究方向为网络协议优化

    单源超:男,硕士生,研究方向为网络协议优化

    黄家玮:男,博士,教授,研究方向为网络协议优化

    通讯作者:

    叶进 yejin@gxu.edu.cn

  • 中图分类号: TN927.2

A Routing Algorithm on Low Earth Orbit Mega-constellation Network with Iincremental Deployment of Terahertz Links

Funds: The National Natural Science Foundation of China (62132022, U22A2021)
  • 摘要: 太赫兹通信作为6G研究的关键技术之一,将在下一代巨型近地轨道(LEO)星座网络中与其他频段链路共存,在这样增量部署太赫兹的巨型LEO星座网络中,星间链路扭曲窗口期的路径次优问题将变得更加明显,现有的路由算法仅依赖于最短时延路径难以解决这个问题。为此该文提出一种增量部署太赫兹链路的时空图建模,以及考虑弯管转发和星间链路相结合的自适应选择路由算法(ATLS)。在Hypatia网络模拟器中的测试表明,与已有的路由方式相比,ATLS路由能够将任务完成时间降低了17.14%,端到端时延降低16.67%。
  • 图  1  星间链路扭曲问题描述

    图  2  某时间窗下网络拓扑示意图(基于Starlink星座构型)

    图  3  太赫兹增量部署引入的链路平均时延变化情况

    图  4  引入oISL后“+Grid”连接模式的曼哈顿网络局部模型

    图  5  本文的时空图结构

    图  6  ISL变化错失率与时间片数量的关系

    图  7  不同路由算法性能评价指标对比

    表  1  实验参数设置

    参数名称参数名称
    时间间隔$ \tau $100 ms太赫兹天线发射功率1 W
    卫星轨道数72太赫兹天线等效噪声温度0.01 K
    每轨卫星数22Ka天线频率27.0 GHz
    轨道倾斜角53.7°Ka天线发射功率1 W
    每星固定天线数4存储/转发的单元能耗$ {\mathit{\delta }}_{\mathit{s}} $$ {10}^{-6} $ kJ
    每星机动天线数4地面站发送/接收节点数100
    每星GSL数1地面中继节点数196
    单星存储容量200 MB流量平均大小100 MB
    单星电池容量50 kW·h每节点对流数量100
    太赫兹天线频率0.145 THz拥塞控制算法TCP Cubic
    下载: 导出CSV
  • [1] 张更新, 王运峰, 丁晓进, 等. 卫星互联网若干关键技术研究[J]. 通信学报, 2021, 42(8): 1–14. doi: 10.11959/j.issn.1000-436x.2021156

    ZHANG Gengxin, WANG Yunfeng, DING Xiaojin, et al. Research on several key technologies of satellite Internet[J]. Journal on Communications, 2021, 42(8): 1–14. doi: 10.11959/j.issn.1000-436x.2021156
    [2] 倪少杰, 岳洋, 左勇, 等. 卫星网络路由技术现状及展望[J]. 电子与信息学报, 2023, 45(2): 383–395. doi: 10.11999/JEIT211393

    NI Shaojie, YUE Yang, ZUO Yong, et al. The status quo and prospect of satellite network routing technology[J]. Journal of Electronics &Information Technology, 2023, 45(2): 383–395. doi: 10.11999/JEIT211393
    [3] 王宁远, 陈东, 刘亮, 等. 未来低轨信息网络发展与架构展望[J]. 电子与信息学报, 2023, 45(2): 396–406. doi: 10.11999/JEIT211400

    WANG Ningyuan, CHEN Dong, LIU Liang, et al. Development trend and architecture prospect of future low-earth-orbit information networks[J]. Journal of Electronics &Information Technology, 2023, 45(2): 396–406. doi: 10.11999/JEIT211400
    [4] BHATTACHERJEE D, KASSING S, LICCIARDELLO M, et al. In-orbit computing: An outlandish thought experiment?[C]. The 19th ACM Workshop on Hot Topics in Networks (HotNets’19), Virtual Event, USA, 2020: 197–204.
    [5] 孙喆. “长征”十一号火箭成功发射“虹云”工程首颗卫星[J]. 中国航天, 2019(1): 42. doi: 10.3969/j.issn.1002-7742.2019.01.014

    SUN Zhe. A LM-11 carrier rocket successfully sends the first satellite in Hongyun project[J]. Aerospace China, 2019(1): 42. doi: 10.3969/j.issn.1002-7742.2019.01.014
    [6] HWU S U, DESILVA K B, and JIH C T. Terahertz (THz) wireless systems for space applications[C]. 2013 IEEE Sensors Applications Symposium Proceedings, Galveston, USA, 2013: 171–175.
    [7] KHALATPOUR A, PAULSEN A K, DEIMERT C, et al. High-power portable terahertz laser systems[J]. Nature Photonics, 2021, 15(1): 16–20. doi: 10.1038/s41566-020-00707-5
    [8] LI Jian, LU Hancheng, XUE Kaiping, et al. Temporal netgrid model-based dynamic routing in large-scale small satellite networks[J]. IEEE Transactions on Vehicular Technology, 2019, 68(6): 6009–6021. doi: 10.1109/TVT.2019.2910570
    [9] SONG Guanghua, CHAO Mengyuan, YANG Bowei, et al. TLR: A traffic-light-based intelligent routing strategy for NGEO satellite IP networks[J]. IEEE Transactions on Wireless Communications, 2014, 13(6): 3380–3393. doi: 10.1109/TWC.2014.041014.130040
    [10] 陈全, 杨磊, 郭剑鸣, 等. 低轨巨型星座网络: 组网技术与研究现状[J]. 通信学报, 2022, 43(5): 177–189. doi: 10.11959/j.issn.1000-436x.2022075

    CHEN Quan, YANG Lei, GUO Jianming, et al. LEO mega-constellation network: Networking technologies and state of the art[J]. Journal on Communications, 2022, 43(5): 177–189. doi: 10.11959/j.issn.1000-436x.2022075
    [11] BAO Jinzhen, ZHAO Baokang, YU Wanrong, et al. OpenSAN: A software-defined satellite network architecture[J]. ACM SIGCOMM Computer Communication Review, 2014, 44(4): 347–348. doi: 10.1145/2740070.2631454
    [12] PAPA A, DE COLA T, VIZARRETA P, et al. Dynamic SDN controller placement in a LEO constellation satellite network[C]. 2018 IEEE Global Communications Conference (GLOBECOM), Abu Dhabi, United Arab Emirates, 2018: 206–212.
    [13] LI Taixin, ZHOU Huachun, LUO Hongbin, et al. SERvICE: A software defined framework for integrated space-terrestrial satellite communication[J]. IEEE Transactions on Mobile Computing, 2018, 17(3): 703–716. doi: 10.1109/TMC.2017.2732343
    [14] TANG Feilong. Dynamically adaptive cooperation transmission among satellite-ground integrated networks[C]. IEEE INFOCOM 2020-IEEE Conference on Computer Communications, Toronto, Canada, 2020: 1559–1568.
    [15] CHEN Quan, GIAMBENE G, YANG Lei, et al. Analysis of inter-satellite link paths for LEO mega-constellation networks[J]. IEEE Transactions on Vehicular Technology, 2021, 70(3): 2743–2755. doi: 10.1109/TVT.2021.3058126
    [16] HANDLEY M. Using ground relays for low-latency wide-area routing in megaconstellations[C]. The 18th ACM Workshop on Hot Topics in Networks, Princeton, USA, 2019: 125–132.
    [17] KASSING S, BHATTACHERJEE D, ÁGUAS A B, et al. Exploring the "Internet from space" with Hypatia[C]. The ACM Internet Measurement Conference, Virtual Event, USA, 2020: 214–229.
    [18] BHATTACHERJEE D and SINGLA A. Network topology design at 27, 000 km/hour[C]. The 15th International Conference on Emerging Networking Experiments and Technologies, Orlando, USA, 2019: 341–354.
    [19] HANDLEY M. Delay is not an option: Low latency routing in space[C]. The 17th ACM Workshop on Hot Topics in Networks, Redmond, USA, 2018: 85–91.
    [20] SpaceX. SpaceX non-geostationary satellite system[EB/OL]. https://fcc.report/IBFS/SAT-MOD-20190830-00087/1877671. 2022.
    [21] CHEN Quan, CHEN Xiaoqian, YANG Lei, et al. A distributed congestion avoidance routing algorithm in mega-constellation network with multi-gateway[J]. Acta Astronautica, 2019, 162: 376–387. doi: 10.1016/j.actaastro.2019.05.051
    [22] COMELLAS F, DALFÓ C, FIOL M A, et al. The spectra of Manhattan street networks[J]. Linear Algebra and its Applications, 2008, 429(7): 1823–1839. doi: 10.1016/j.laa.2008.05.018
    [23] KARAPANTAZIS S, PAPAPETROU E, and PAVLIDOU F N. Multiservice on-demand routing in LEO satellite networks[J]. IEEE Transactions on Wireless Communications, 2009, 8(1): 107–112. doi: 10.1109/TWC.2009.080334
    [24] JORNET J M and AKYILDIZ I F. Channel modeling and capacity analysis for electromagnetic wireless nanonetworks in the terahertz band[J]. IEEE Transactions on Wireless Communications, 2011, 10(10): 3211–3221. doi: 10.1109/TWC.2011.081011.100545
    [25] AGI. Systems Tool Kit (STK)[EB/OL]. https://ww2.mathworks.cn/en/products/connections/product_detail/systems-tool-kit.html, 2022.
  • 加载中
图(7) / 表(1)
计量
  • 文章访问数:  434
  • HTML全文浏览量:  331
  • PDF下载量:  95
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-06-24
  • 修回日期:  2022-12-09
  • 网络出版日期:  2022-12-15
  • 刊出日期:  2023-08-21

目录

    /

    返回文章
    返回