高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

异构物联网下资源高效的分层协同联邦学习方法

王汝言 陈伟 张普宁 吴大鹏 杨志刚

王汝言, 陈伟, 张普宁, 吴大鹏, 杨志刚. 异构物联网下资源高效的分层协同联邦学习方法[J]. 电子与信息学报, 2023, 45(8): 2847-2855. doi: 10.11999/JEIT220914
引用本文: 王汝言, 陈伟, 张普宁, 吴大鹏, 杨志刚. 异构物联网下资源高效的分层协同联邦学习方法[J]. 电子与信息学报, 2023, 45(8): 2847-2855. doi: 10.11999/JEIT220914
WANG Ruyan, CHEN Wei, ZHANG Puning, WU Dapeng, YANG Zhigang. Resource-Efficient Hierarchical Collaborative Federated Learning in Heterogeneous Internet of Things[J]. Journal of Electronics & Information Technology, 2023, 45(8): 2847-2855. doi: 10.11999/JEIT220914
Citation: WANG Ruyan, CHEN Wei, ZHANG Puning, WU Dapeng, YANG Zhigang. Resource-Efficient Hierarchical Collaborative Federated Learning in Heterogeneous Internet of Things[J]. Journal of Electronics & Information Technology, 2023, 45(8): 2847-2855. doi: 10.11999/JEIT220914

异构物联网下资源高效的分层协同联邦学习方法

doi: 10.11999/JEIT220914
基金项目: 国家自然科学基金(61901071, 61871062, 61771082, U20A20157),重庆市自然科学基金(cstc2020jcyj-zdxmX0024),重庆市高校创新研究群体(CXQT20017),重庆高校创新团队建设计划(CXTDX201601020)
详细信息
    作者简介:

    王汝言:男,教授,研究方向为泛在网络、多媒体信息处理等

    陈伟:男,硕士生,研究方向为联邦学习

    张普宁:男,副教授,研究方向为物联网搜索等

    吴大鹏:男,教授,研究方向为泛在无线网络、社会计算等

    杨志刚:男,博士,研究方向为隐私计算等

    通讯作者:

    张普宁 zhangpn@cqupt.edu.cn

  • 中图分类号: TN915; TP399

Resource-Efficient Hierarchical Collaborative Federated Learning in Heterogeneous Internet of Things

Funds: The National Natural Science Foundation of China (61901071, 61871062, 61771082, U20A20157), The Science and Natural Science Foundation of Chongqing (cstc2020jcyj-zdxmX0024), The University Innovation Research Group of Chongqing (CXQT20017), The Program for Innovation Team Building at Institutions of Higher Education in Chongqing (CXTDX201601020)
  • 摘要: 物联网(IoT)设备资源存在高度异构性,严重影响联邦学习(FL)的训练时间和精度。已有研究未充分考虑物联网设备资源的异构性,且缺乏异构设备间协同训练机制的设计,导致训练效果有限且设备的资源利用率较低。为此,该文提出资源高效的分层协同联邦学习方法(HCFL),设计了端边云分层混合聚合机制,考虑边缘服务器的差异化参数聚合频率,提出自适应异步加权聚合方法,提高模型参数聚合效率。提出资源重均衡的客户端选择算法,考虑模型精度与数据分布特征动态选取客户端,缓解资源异构性对联邦学习性能的影响。设计自组织联邦协同训练算法,充分利用空闲物联网设备资源加速联邦学习训练进程。仿真结果表明,在不同资源异构状态下,与基线方法相比,模型训练时间平均降低15%,模型精度平均提高6%,设备平均资源利用率提高52%。
  • 图  1  联邦学习系统架构图

    图  2  模型协作训练流程

    图  3  Mnist资源重均衡客户端选择算法对比

    图  4  Fashion Mnist资源重均衡客户端选择算法对比

    图  5  不同设备异构情况下协作集合发现

    图  6  不同协作策略训练时间对比

    图  7  分层混合聚合机制对比

  • [1] ZHANG Jing and TAO Dacheng. Empowering things with intelligence: a survey of the progress, challenges, and opportunities in artificial intelligence of things[J]. IEEE Internet of Things Journal, 2021, 8(10): 7789–7817. doi: 10.1109/JIOT.2020.3039359
    [2] WANG Xiaofei, HAN Yiwen, LEUNG V C M, et al. Convergence of edge computing and deep learning: A comprehensive survey[J]. IEEE Communications Surveys & Tutorials, 2020, 22(2): 869–904. doi: 10.1109/COMST.2020.2970550
    [3] YANG Qiang, LIU Yang, CHEN Tianjian, et al. Federated machine learning: Concept and applications[J]. ACM Transactions on Intelligent Systems and Technology, 2019, 10(2): 12. doi: 10.1145/3298981
    [4] MCMAHAN B, MOORE E, RAMAGE D, et al. Communication-efficient learning of deep networks from decentralized data[C]. Proceedings of the 20th International Conference on Artificial Intelligence and Statistics, Fort Lauderdale, USA, 2017: 1273–1282.
    [5] LIU Lumin, ZHANG Jun, SONG S H, et al. Client-edge-cloud hierarchical federated learning[C]. Proceedings of 2020 IEEE International Conference on Communications (ICC), Dublin, Ireland, 2020: 1–6.
    [6] CHAI Zheng, ALI A, ZAWAD S, et al. TiFL: A tier-based federated learning system[C]. Proceedings of the 29th International Symposium on High-Performance Parallel and Distributed Computing, Stockholm, Sweden, 2020: 125–136.
    [7] ZAWAD S, ALI A, CHEN Pinyu, et al. Curse or redemption? How data heterogeneity affects the robustness of federated learning[C]. Proceedings of the 35th AAAI Conference on Artificial Intelligence, Vancouver, Canada, 2021: 10807–10814.
    [8] DUAN Moming, LIU Duo, CHEN Xianzhang, et al. Self-balancing federated learning with global imbalanced data in mobile systems[J]. IEEE Transactions on Parallel and Distributed Systems, 2021, 32(1): 59–71. doi: 10.1109/TPDS.2020.3009406
    [9] NISHIO T and YONETANI R. Client selection for federated learning with heterogeneous resources in mobile edge[C]. Proceedings of 2019 IEEE International Conference on Communications (ICC), Shanghai, China, 2019: 1–7.
    [10] PARK J, HAN D J, CHOI M, et al. Sageflow: Robust federated learning against both stragglers and adversaries[C/OL]. Proceedings of the 35th Conference on Neural Information Processing Systems, 2021: 840–851.
    [11] DINH C T, TRAN N H, NGUYEN M N H, et al. Federated learning over wireless networks: Convergence analysis and resource allocation[J]. IEEE/ACM Transactions on Networking, 2021, 29(1): 398–409. doi: 10.1109/TNET.2020.3035770
    [12] ABAD M S H, OZFATURA E, GUNDUZ D, et al. Hierarchical federated learning ACROSS heterogeneous cellular networks[C]. Proceedings of 2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Barcelona, Spain, 2020: 8866–8870.
    [13] ZHAO Yue, LI Meng, LAI Liangzhen, et al. Federated learning with non-IID data[EB/OL]. https://doi.org/10.48550/arXiv.1806.00582, 2018.
    [14] IMTEAJ A, THAKKER U, WANG Shiqiang, et al. A survey on federated learning for resource-constrained IoT devices[J]. IEEE Internet of Things Journal, 2022, 9(1): 1–24. doi: 10.1109/JIOT.2021.3095077
    [15] LI Ang, SUN Jingwei, LI Pengcheng, et al. Hermes: An efficient federated learning framework for heterogeneous mobile clients[C]. Proceedings of the 27th Annual International Conference on Mobile Computing and Networking, New Orleans Louisiana, USA, 2021: 420–437.
    [16] WU Di, ULLAH R, HARVEY P, et al. FedAdapt: Adaptive offloading for IoT devices in federated learning[J]. IEEE Internet of Things Journal, 2022, 9(21): 20889–20901. doi: 10.1109/JIOT.2022.3176469
    [17] HUANG Yakun, QIAO Xiuquan, DUSTDAR S, et al. Toward decentralized and collaborative deep learning inference for intelligent IoT devices[J]. IEEE Network, 2022, 36(1): 59–68. doi: 10.1109/MNET.011.2000639
    [18] ZENG Liekang, CHEN Xu, ZHOU Zhi, et al. CoEdge: Cooperative DNN inference with adaptive workload partitioning over heterogeneous edge devices[J]. IEEE/ACM Transactions on Networking, 2021, 29(2): 595–608. doi: 10.1109/TNET.2020.3042320
    [19] SCHULMAN J, WOLSKI F, DHARIWAL P, et al. Proximal policy optimization algorithms[J]. arXiv: 1707.06347, 2017.
    [20] HE Chaoyang, LI Songze, SO J, et al. FedML: A research library and benchmark for federated machine learning[J]. arXiv: 2007.13518, 2020.
    [21] LECUN Y, BOTTOU L, BENGIO Y, et al. Gradient-based learning applied to document recognition[J]. Proceedings of the IEEE, 1998, 86(11): 2278–2324. doi: 10.1109/5.726791
    [22] XIAO Han, RASUL K, and VOLLGRAF R. Fashion-MNIST: A novel image dataset for benchmarking machine learning algorithms[EB/OL]. https://doi.org/10.48550/arXiv.1708.07747, 2017.
    [23] YOSHIDA N, NISHIO T, MORIKURA M, et al. Hybrid-FL for wireless networks: Cooperative learning mechanism using non-IID data[C]. Proceedings of 2020 IEEE International Conference on Communications (ICC), Dublin, Ireland, 2020: 1–7.
  • 加载中
图(7)
计量
  • 文章访问数:  848
  • HTML全文浏览量:  459
  • PDF下载量:  245
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-07-06
  • 修回日期:  2022-08-21
  • 网络出版日期:  2022-09-02
  • 刊出日期:  2023-08-21

目录

    /

    返回文章
    返回