高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

RIS辅助的MISO系统安全鲁棒波束赋形算法

李国权 党刚 林金朝 徐勇军 黄正文

李国权, 党刚, 林金朝, 徐勇军, 黄正文. RIS辅助的MISO系统安全鲁棒波束赋形算法[J]. 电子与信息学报, 2023, 45(8): 2867-2875. doi: 10.11999/JEIT220894
引用本文: 李国权, 党刚, 林金朝, 徐勇军, 黄正文. RIS辅助的MISO系统安全鲁棒波束赋形算法[J]. 电子与信息学报, 2023, 45(8): 2867-2875. doi: 10.11999/JEIT220894
LI Guoquan, DANG Gang, LIN Jinzhao, XU Yongjun, HUANG Zhengwen. Secure and Robust Beamforming Algorithm for RIS Assisted MISO Systems[J]. Journal of Electronics & Information Technology, 2023, 45(8): 2867-2875. doi: 10.11999/JEIT220894
Citation: LI Guoquan, DANG Gang, LIN Jinzhao, XU Yongjun, HUANG Zhengwen. Secure and Robust Beamforming Algorithm for RIS Assisted MISO Systems[J]. Journal of Electronics & Information Technology, 2023, 45(8): 2867-2875. doi: 10.11999/JEIT220894

RIS辅助的MISO系统安全鲁棒波束赋形算法

doi: 10.11999/JEIT220894
基金项目: 国家重点研发计划(2019YFC1511300),国家自然科学基金(U21A20447),重庆市自然科学基金(cstc2020jcyj-cxttX0002)
详细信息
    作者简介:

    李国权:男,教授,研究方向为无线资源管理、智能反射面优化等

    党刚:男,硕士生,研究方向为无线资源管理、智能反射面优化

    林金朝:男,教授,博士生导师,研究方向为无线传输技术、BAN网络与信道处理技术等

    徐勇军:男,副教授,研究方向为反向散射通信、智能反射面、异构无线网络等

    黄正文:男,讲师/高级研究员,研究方向为人工智能、复杂系统优化等

    通讯作者:

    李国权 ligq@cqupt.edu.cn

  • 中图分类号: TN929.5

Secure and Robust Beamforming Algorithm for RIS Assisted MISO Systems

Funds: The National Key Research and Development Program of China (2019YFC1511300), The National Natural Science Foundation of China (U21A20447), The Natural Science Foundation of Chongqing (cstc2020jcyj-cxttX0002)
  • 摘要: 为解决无线信道开放性导致的信息传输安全及信道估计误差等不确定性带来的系统传输性能恶化问题,该文提出一种存在用户窃听的可重构智能超表面(RIS)辅助多输入单输出(MISO)系统的Charnes-Cooper鲁棒波束赋形算法。针对窃听用户建立有界信道不确定性模型,并通过约束最大发射功率以及RIS相移,联合优化基站波束和RIS相移来最大化用户保密率。为求解该非凸问题,首先通过变量替换、Charnes-Cooper方法和S-procedure方法将其转换为凸优化问题,进而采用间接交替优化耦合变量来获得鲁棒波束赋形矩阵和RIS相移。仿真结果表明,该文提出的基于RIS的联合优化算法具有更好的用户保密率和鲁棒性。
  • 图  1  系统模型

    图  2  间接交替优化的算法设计

    图  3  系统模型

    图  4  用户保密率与RIS反射单元数目的关系

    图  5  基站发射功率与用户保密率的关系

    图  6  用户保密率与RIS位置的关系

    图  7  信道不确定性与用户保密率的关系

    图  8  基站发射功率、RIS单元数目与不同对象速率的关系

    图  9  窃听用户信道不确定性与窃听用户的占比的关系

    算法1 具体步骤
     初始化$N$, $M$, $ {P^{\max }} $, ${\boldsymbol{Z}}$、信道参数、信道不确定度和位置,设
     置最大迭代次数和收敛精度;
     1: for iter=1, 2,···, iter(max)
     2: 求解问题式(18)得到Charnes-Cooper转化后的半正定矩阵${\boldsymbol{U}}$和
       辅助变量$ \eta $;
     3: 根据特征值分解以及高斯随机化得到${\boldsymbol{\varphi }}$和$\overline {\boldsymbol{U}} $;
     4: 根据公式$ \overline {\boldsymbol{V}} = \overline {\boldsymbol{U}} /\varsigma $得到RIS的相移矩阵${\boldsymbol{\psi }}$;
     5: 求解问题式(26)得到Charnes-Cooper转化后的半正定矩阵${\boldsymbol{Z}}$和
       辅助变量$ \varepsilon $;
     6: 依据公式${\boldsymbol{W}} = {\boldsymbol{Z}}/\vartheta $得到基站的波束矩阵${\boldsymbol{W}}$;
     7: 根据式(28)计算用户保密率;
     8: if $\left| { {R^{({\rm{iter}} + 1)} } - {R^{({\rm{iter}})} } } \right| \le { { {\varepsilon } }_{\text{p} } }$
        break
       else
        iter=iter+1;
       end
     9: end
    下载: 导出CSV

    表  1  仿真参数

    参数参数
    1m内的信号衰减[8]30 dB非完美CSI的信道不确定性比率$ k $0.01
    噪声功率–110 dBm路径损耗[24]RIS到合法用户:2.8
    基站发射天线数目$N$4RIS到窃听用户:2.8
    莱斯因子β1BS到合法用户:3.8
    收敛精度εp0.0001BS到窃听用户:3.8
    仿真的最大迭代次数iter(max)600BS到RIS:2.2
    下载: 导出CSV
  • [1] 胡莹, 黄永明, 俞菲, 等. 多用户大规模MIMO系统能效资源分配算法[J]. 电子与信息学报, 2015, 37(9): 2198–2203. doi: 10.11999/JEIT150088

    HU Ying, HUANG Yongming, YU Fei, et al. Energy-efficient resource allocation based on multi-user massive MIMO system[J]. Journal of Electronics &Information Technology, 2015, 37(9): 2198–2203. doi: 10.11999/JEIT150088
    [2] 金梁, 宋昊天, 钟州, 等. 多用户大规模MIMO自适应安全传输策略[J]. 电子与信息学报, 2018, 40(6): 1468–1475. doi: 10.11999/JEIT170974

    JIN Liang, SONG Haotian, ZHONG Zhou, et al. Adaptive secure transmission strategy for multiuser massive MIMO[J]. Journal of Electronics &Information Technology, 2018, 40(6): 1468–1475. doi: 10.11999/JEIT170974
    [3] LI Guoquan, HONG Zijie, PANG Yu, et al. Resource allocation for sum-rate maximization in NOMA-based generalized spatial modulation[J]. Digital Communications and Networks, 2022, 8(6): 1077–1084. doi: 10.1016/j.dcan.2022.02.005
    [4] LI Guoquan, ZHANG Hui, WANG Yuhui, et al. QoS guaranteed power minimization and beamforming for IRS-assisted NOMA systems[J]. IEEE Wireless Communications Letters, 2023, 12(3): 391–395. doi: 10.1109/LWC.2022.3189272
    [5] HUANG Chongwen, HU Sha, ALEXANDROPOULOS G C, et al. Holographic MIMO surfaces for 6G wireless networks: Opportunities, challenges, and trends[J]. IEEE Wireless Communications, 2020, 27(5): 118–125. doi: 10.1109/MWC.001.1900534
    [6] ZHOU Gui, PAN Cunhua, REN Hong, et al. Robust beamforming design for intelligent reflecting surface aided MISO communication systems[J]. IEEE Wireless Communications Letters, 2020, 9(10): 1658–1662. doi: 10.1109/LWC.2020.3000490
    [7] ALMOHAMAD A, TAHIR A M, AL-KABABJI A, et al. Smart and secure wireless communications via reflecting intelligent surfaces: A short survey[J]. IEEE Open Journal of the Communications Society, 2020, 1: 1442–1456. doi: 10.1109/OJCOMS.2020.3023731
    [8] CHEN Jie, LIANG Yingchang, PEI Yiyang, et al. Intelligent reflecting surface: A programmable wireless environment for physical layer security[J]. IEEE Access, 2019, 7: 82599–82612. doi: 10.1109/ACCESS.2019.2924034
    [9] WU Qingqing and ZHANG Rui. Intelligent reflecting surface enhanced wireless network: Joint active and passive beamforming design[C]. 2018 IEEE Global Communications Conference, Abu Dhabi, United Arab Emirates, 2018: 1–6. doi: 10.1109/GLOCOM.2018.8647620.
    [10] FU Min, ZHOU Yong, and SHI Yuanming. Intelligent reflecting surface for downlink non-orthogonal multiple access networks[C]. 2019 IEEE Globecom Workshops, Waikoloa, USA, 2019: 1–6. doi: 10.1109/GCWkshps45667.2019.9024675.
    [11] HUANG Chongwen, ZAPPONE A, ALEXANDROPOULOS G C, et al. Reconfigurable intelligent surfaces for energy efficiency in wireless communication[J]. IEEE Transactions on Wireless Communications, 2019, 18(8): 4157–4170. doi: 10.1109/TWC.2019.2922609
    [12] YU Xianghao, XU Dongfang, and SCHOBER R. Enabling secure wireless communications via intelligent reflecting surfaces[C]. 2019 IEEE Global Communications Conference, Waikoloa, USA, 2019: 1–6. doi: 10.1109/GLOBECOM38437.2019.9014322.
    [13] XU Dongfang, YU Xianghao, SUN Yan, et al. Resource allocation for secure IRS-assisted multiuser MISO systems[C]. 2019 IEEE Globecom Workshops, Waikoloa, USA, 2019: 1–6. doi: 10.1109/GCWkshps45667.2019.9024490.
    [14] WANG Qun, ZHOU Fuhui, HU R Q, et al. Energy efficient robust beamforming and cooperative jamming design for IRS-assisted MISO networks[J]. IEEE Transactions on Wireless Communications, 2021, 20(4): 2592–2607. doi: 10.1109/TWC.2020.3043325
    [15] 景小荣, 宋振远, 高维, 等. 智能反射表面辅助的MISO通信系统的物理层安全设计方案[J]. 通信学报, 2022, 43(1): 117–126. doi: 10.11959/j.issn.1000-436x.2022018

    JING Xiaorong, SONG Zhenyuan, GAO Wei, et al. Design scheme of physical layer security for intelligent reflecting surface-assisted MISO communication system[J]. Journal on Communications, 2022, 43(1): 117–126. doi: 10.11959/j.issn.1000-436x.2022018
    [16] YU Xianghao, XU Dongfang, SUN Ying, et al. Robust and secure wireless communications via intelligent reflecting surfaces[J]. IEEE Journal on Selected Areas in Communications, 2020, 38(11): 2637–2652. doi: 10.1109/JSAC.2020.3007043
    [17] GUAN Xinrong, WU Qingqing, and ZHANG Rui. Intelligent reflecting surface assisted secrecy communication: Is artificial noise helpful or not?[J]. IEEE Wireless Communications Letters, 2020, 9(6): 778–782. doi: 10.1109/LWC.2020.2969629
    [18] ZHANG Zheng, LV Lu, WU Qingqing, et al. Robust and secure communications in intelligent reflecting surface assisted NOMA networks[J]. IEEE Communications Letters, 2021, 25(3): 739–743. doi: 10.1109/LCOMM.2020.3039811
    [19] LI Qiang and MA W K. Optimal and robust transmit designs for MISO channel secrecy by semidefinite programming[J]. IEEE Transactions on Signal Processing, 2011, 59(8): 3799–3812. doi: 10.1109/TSP.2011.2146775
    [20] LUO Zhiquan, MA W K, SO A M C, et al. Semidefinite relaxation of quadratic optimization problems[J]. IEEE Signal Processing Magazine, 2010, 27(3): 20–34. doi: 10.1109/MSP.2010.936019
    [21] ZHOU Gui, PAN Cunhua, REN Hong, et al. Secure wireless communication in RIS-aided MISO system with hardware impairments[J]. IEEE Wireless Communications Letters, 2021, 10(6): 1309–1313. doi: 10.1109/LWC.2021.3064992
    [22] HAN Yu, TANG Wankai, JIN Shi, et al. Large intelligent surface-assisted wireless communication exploiting statistical CSI[J]. IEEE Transactions on Vehicular Technology, 2019, 68(8): 8238–8242. doi: 10.1109/TVT.2019.2923997
    [23] WEI Li, HUANG Chongwen, ALEXANDROPOULOS G C, et al. Channel estimation for RIS-empowered multi-user MISO wireless communications[J]. IEEE Transactions on Communications, 2021, 69(6): 4144–4157. doi: 10.1109/TCOMM.2021.3063236
    [24] ABEYWICKRAMA S, ZHANG Rui, WU Qingqing, et al. Intelligent reflecting surface: Practical phase shift model and beamforming optimization[J]. IEEE Transactions on Communications, 2020, 68(9): 5849–5863. doi: 10.1109/TCOMM.2020.3001125
    [25] WU Qingqing and ZHANG Rui. Towards smart and reconfigurable environment: Intelligent reflecting surface aided wireless network[J]. IEEE Communications Magazine, 2020, 58(1): 106–112. doi: 10.1109/MCOM.001.1900107
  • 加载中
图(9) / 表(2)
计量
  • 文章访问数:  437
  • HTML全文浏览量:  359
  • PDF下载量:  153
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-07-04
  • 修回日期:  2023-02-27
  • 网络出版日期:  2023-03-13
  • 刊出日期:  2023-08-21

目录

    /

    返回文章
    返回