高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

一种灵敏度漂移自补偿型MEMS电场传感器

储昭志 杨鹏飞 闻小龙 彭春荣 刘宇涛 吴双

储昭志, 杨鹏飞, 闻小龙, 彭春荣, 刘宇涛, 吴双. 一种灵敏度漂移自补偿型MEMS电场传感器[J]. 电子与信息学报, 2023, 45(8): 3040-3046. doi: 10.11999/JEIT220882
引用本文: 储昭志, 杨鹏飞, 闻小龙, 彭春荣, 刘宇涛, 吴双. 一种灵敏度漂移自补偿型MEMS电场传感器[J]. 电子与信息学报, 2023, 45(8): 3040-3046. doi: 10.11999/JEIT220882
CHU Zhaozhi, YANG Pengfei, WEN Xiaolong, PENG Chunrong, LIU Yutao, WU Shuang. A MEMS-based Electric Field Sensor with Self-compensation for Sensitivity Drift[J]. Journal of Electronics & Information Technology, 2023, 45(8): 3040-3046. doi: 10.11999/JEIT220882
Citation: CHU Zhaozhi, YANG Pengfei, WEN Xiaolong, PENG Chunrong, LIU Yutao, WU Shuang. A MEMS-based Electric Field Sensor with Self-compensation for Sensitivity Drift[J]. Journal of Electronics & Information Technology, 2023, 45(8): 3040-3046. doi: 10.11999/JEIT220882

一种灵敏度漂移自补偿型MEMS电场传感器

doi: 10.11999/JEIT220882
基金项目: 国家重点研发计划(2021YFB2011700),国家自然科学基金(62001472,62101054),北京市教育委员会科学研究计划项目(KM202211232005)
详细信息
    作者简介:

    储昭志:男,助理研究员,研究方向为MEMS与微加工、微型电场传感器及其应用

    杨鹏飞:男,副教授,研究方向为微传感器与微系统、新型电学量传感器、低频电场探测

    闻小龙:男,副教授,研究方向为微传感器与微系统、电场传感器、磁场传感器

    彭春荣:男,研究员,研究方向为微传感器与微系统、新型电学量传感器及应用

    刘宇涛:男,工程师,研究方向为微系统集成技术

    吴双:男,工程师,研究方向为电场探测技术及其应用

    通讯作者:

    杨鹏飞 pfy@bistu.edu.cn

  • 中图分类号: TP212.1

A MEMS-based Electric Field Sensor with Self-compensation for Sensitivity Drift

Funds: The National Key R&D Program of China (2021YFB2011700), The National Natural Science Foundation of China (62001472, 62101054), The R&D Program of Beijing Municipal Education Commission (KM202211232005)
  • 摘要: 针对温度和应力变化带来的电场传感器灵敏度漂移和测量误差问题,该文提出一种具有灵敏度漂移自补偿功能的微机电系统(MEMS)谐振式电场传感器。传感器结构中,感应电极用于测量外部电场,参考电极用于监测可动结构振动信息;基于振动相位和锁相环技术实现传感器谐振频率自动跟踪,利用参考电极输出信号对感应电极输出信号进行实时补偿,提高传感器灵敏度的稳定性。该文开展了敏感结构设计和理论分析,研制出传感器样机,并进行了样机标定测试。测试结果表明,在±18 kV/m电场范围内,传感器线性度达到0.21%,3个往返行程总不确定度达到1.34%;在–40°C~70°C温度范围内,灵敏度相对漂移量小于3.0%,具有良好的灵敏度漂移自补偿效果。
  • 图  1  传感器敏感结构平面示意图

    图  2  传感器工作原理图

    图  3  参考电极结构示意图

    图  4  敏感芯片制备工艺流程

    图  5  敏感芯片的扫描电镜照片

    图  6  传感器电路框图

    图  7  传感器测试系统实物图

    图  8  1号传感器电场响应特性

    图  9  1号传感器谐振频率随温度变化特性

    图  10  1号传感器相对振幅随温度变化特性

    图  11  1号传感器灵敏度相对漂移量随温度变化特性

    表  1  传感器灵敏度相对漂移量随温度变化的测试结果(%)

    温度(°C)1号传感器2号传感器3号传感器4号传感器5号传感器6号传感器
    未补偿补偿后未补偿补偿后未补偿补偿后未补偿补偿后未补偿补偿后未补偿补偿后
    –4010.9–0.512.1–0.412.1–0.212.80.78.1–1.118.1–0.9
    –308.7–1.09.4–1.210.4–0.210.40.06.7–1.315.5–0.2
    –208.40.77.4–1.07.8–0.78.40.06.3–0.210.31.0
    –107.11.55.8–0.35.6–0.56.70.45.60.66.81.0
    04.40.83.7–0.23.6–0.33.9–0.13.70.45.21.3
    101.4–0.4–1.2–3.01.5–0.52.40.41.2–0.42.10.3
    20000000000000
    30–1.50.4–1.70.4–1.11.1–1.50.6–1.7–0.2–1.20.6
    40–2.90.9–3.11.0–3.30.8–5.1–1.2–3.8–0.7–3.90.3
    50–4.60.9–5.40.6–5.20.8–8.1–2.5–5.4–0.8–5.90.4
    60–6.50.6–7.00.8–6.51.3–9.3–1.9–7.4–1.3–9.2–1.3
    70–8.40.3–9.9–0.4–7.22.4–11.4–2.2–9.8–2.2–10.9–0.8
    下载: 导出CSV

    表  2  传感器灵敏度相对漂移量的平均值及标准差(%)

    1号2号3号4号5号6号
    未补偿平均值1.40.81.50.80.32.2
    标准差6.26.66.27.75.78.9
    补偿后平均值0.4–0.30.3–0.5–0.60.1
    标准差0.71.00.91.10.80.8
    下载: 导出CSV
  • [1] MONTANYA J, BERGAS J, and HERMOSO B. Electric field measurements at ground level as a basis for lightning hazard warning[J]. Journal of Electrostatics, 2004, 60(2/4): 241–246. doi: 10.1016/j.elstat.2004.01.009
    [2] 王德才. 电线电压与电流非接触检测技术研究[D]. [博士论文], 重庆大学, 2018.

    WANG Decai. Study on non-contact detecting technology for electric power line-voltage and current[D]. [Ph. D. dissertation], Chongqing University, 2018.
    [3] PAILLAT T, MOREAU E, and TOUCHARD G. Space charge density at the wall in the case of heptane flowing through an insulating pipe[J]. Journal of Electrostatics, 2001, 53(2): 171–182. doi: 10.1016/S0304-3886(01)00139-5
    [4] 李亮亮, 赵清山, 李义鹏, 等. 电导率对成品油静电特性影响试验研究[J]. 工业安全与环保, 2018, 44(7): 9–12. doi: 10.3969/j.issn.1001-425X.2018.07.003

    LI Liangliang, ZHAO Qingshan, LI Yipeng, et al. Experimental study on the effect of conductivity on the electrostatic characteristics of petroleum products[J]. Industrial Safety and Environmental Protection, 2018, 44(7): 9–12. doi: 10.3969/j.issn.1001-425X.2018.07.003
    [5] RIEHL P S, SCOTT K L, MULLER R S, et al. Electrostatic charge and field sensors based on micromechanical resonators[J]. Journal of Microelectromechanical Systems, 2003, 12(5): 577–589. doi: 10.1109/JMEMS.2003.818066
    [6] PENG Chunrong, CHEN Xianxiang, YE Cao, et al. Design and testing of a micromechanical resonant electrostatic field sensor[J]. Journal of Micromechanics and Microengineering, 2006, 16(5): 914–919. doi: 10.1088/0960-1317/16/5/006
    [7] BAHREYNI B, WIJEWEERA G, SHAFAI C, et al. Analysis and design of a micromachined electric-field sensor[J]. Journal of Microelectromechanical Systems, 2008, 17(1): 31–36. doi: 10.1109/JMEMS.2007.911870
    [8] YANG Pengfei, PENG Chunrong, FANG Dongming, et al. Design, fabrication and application of an SOI-based resonant electric field microsensor with coplanar comb-shaped electrodes[J]. Journal of Micromechanics and Microengineering, 2013, 23(5): 055002. doi: 10.1088/0960-1317/23/5/055002
    [9] WANG Yu, FANG Dongming, FENG Ke, et al. A novel micro electric field sensor with XY dual axis sensitive differential structure[J]. Sensors and Actuators A:Physical, 2015, 229: 1–7. doi: 10.1016/j.sna.2015.03.013
    [10] CHU Zhaozhi, PENG Chunrong, REN Ren, et al. A high sensitivity electric field microsensor based on torsional resonance[J]. Sensors, 2018, 18(1): 286. doi: 10.3390/s18010286
    [11] LING Biyun, PENG Chunrong, REN Ren, et al. Design, fabrication and characterization of a MEMS-based three-dimensional electric field sensor with low cross-axis coupling interference[J]. Sensors, 2018, 18(3): 870. doi: 10.3390/s18030870
    [12] YANG Pengfei, WEN Xiaolong, CHU Zhaozhi, et al. Non-intrusive DC voltage measurement based on resonant electric field microsensors[J]. Journal of Micromechanics and Microengineering, 2021, 31(6): 064001. doi: 10.1088/1361-6439/abf631
    [13] WEN Xiaolong, YANG Pengfei, CHU Zhaozhi, et al. Toward atmospheric electricity research: A low-cost, highly sensitive and robust balloon-borne electric field sounding sensor[J]. IEEE Sensors Journal, 2021, 21(12): 13405–13416. doi: 10.1109/JSEN.2021.3070130
    [14] WEN Xiaolong, YANG Pengfei, ZHANG Zhouwei, et al. Resolution-enhancing structure for the electric field microsensor chip[J]. Micromachines, 2021, 12(8): 936. doi: 10.3390/mi12080936
    [15] YANG Pengfei, WEN Xiaolong, LV Yao, et al. A non-intrusive voltage measurement scheme based on MEMS electric field sensors: Theoretical analysis and experimental verification of AC power lines[J]. Review of Scientific Instruments, 2021, 92(6): 065002. doi: 10.1063/5.0052678
    [16] LEI Hucheng, XIA Shanhong, CHU Zhaozhi, et al. An electric field microsensor with mutual shielding electrodes[J]. Micromachines, 2021, 12(4): 360. doi: 10.3390/mi12040360
    [17] YANG Pengfei, WEN Xiaolong, LV Yao, et al. Improved Microsensor-based fieldmeter for ground-level atmospheric electric field measurements[C]. IEEE Transactions on Instrumentation and Measurement, 2022, 71: 2001510.
    [18] LIU Jun, XIA Shanhong, PENG Chunrong, et al. Wafer-level vacuum-packaged electric field microsensor: Structure design, theoretical model, microfabrication, and characterization[J]. Micromachines, 2022, 13(6): 928. doi: 10.3390/mi13060928
    [19] 杨鹏飞, 陈博, 闻小龙, 等. 一种基于MEMS芯片的新型地面大气电场传感器[J]. 电子与信息学报, 2016, 38(6): 1536–1540. doi: 10.11999/JEIT150994

    YANG Pengfei, CHEN Bo, WEN Xiaolong, et al. A novel MEMS chip-based ground atmospheric electric field sensor[J]. Journal of Electronics &Information Technology, 2016, 38(6): 1536–1540. doi: 10.11999/JEIT150994
    [20] 闻小龙, 杨鹏飞, 储昭志, 等. 基于MEMS的距离自适应型非接触静电仪[J]. 电子与信息学报, 2021, 43(10): 3068–3074. doi: 10.11999/JEIT200571

    WEN Xiaolong, YANG Pengfei, CHU Zhaozhi, et al. A daptive-distance noncontact electrostatic meter based on MEMS technology[J]. Journal of Electronics &Information Technology, 2021, 43(10): 3068–3074. doi: 10.11999/JEIT200571
  • 加载中
图(11) / 表(2)
计量
  • 文章访问数:  397
  • HTML全文浏览量:  189
  • PDF下载量:  70
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-07-01
  • 修回日期:  2022-11-14
  • 网络出版日期:  2022-11-16
  • 刊出日期:  2023-08-21

目录

    /

    返回文章
    返回