高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

可重构智能表面中的低复杂度毫米波信道追踪算法

蒲旭敏 刘雁翔 孙致南 李静洁 陈前斌 金石

蒲旭敏, 刘雁翔, 孙致南, 李静洁, 陈前斌, 金石. 可重构智能表面中的低复杂度毫米波信道追踪算法[J]. 电子与信息学报, 2023, 45(8): 2911-2918. doi: 10.11999/JEIT220875
引用本文: 蒲旭敏, 刘雁翔, 孙致南, 李静洁, 陈前斌, 金石. 可重构智能表面中的低复杂度毫米波信道追踪算法[J]. 电子与信息学报, 2023, 45(8): 2911-2918. doi: 10.11999/JEIT220875
PU Xumin, LIU Yanxiang, SUN Zhinan, LI Jingjie, CHEN Qianbin, JIN Shi. A Low Complexity Millimeter Wave Channel Tracking Algorithm in Reconfigurable Intelligent Surface[J]. Journal of Electronics & Information Technology, 2023, 45(8): 2911-2918. doi: 10.11999/JEIT220875
Citation: PU Xumin, LIU Yanxiang, SUN Zhinan, LI Jingjie, CHEN Qianbin, JIN Shi. A Low Complexity Millimeter Wave Channel Tracking Algorithm in Reconfigurable Intelligent Surface[J]. Journal of Electronics & Information Technology, 2023, 45(8): 2911-2918. doi: 10.11999/JEIT220875

可重构智能表面中的低复杂度毫米波信道追踪算法

doi: 10.11999/JEIT220875
基金项目: 国家自然科学基金(61701062),中国博士后科学基金(2019M651649),江苏省博士后科研基金(2018K041c),重庆市教育委员会科学技术研究项目(KJQN202100649, KJQN202000612)
详细信息
    作者简介:

    蒲旭敏:男,副教授,硕士生导师,研究方向为新一代无线通信理论,聚焦其信息理论、信道估计和信号检测

    刘雁翔:男,硕士生,研究方向为正交时频空间调制、无线通信信道估计

    孙致南:男,硕士生,研究方向为大规模MIMO信号检测、信道估计

    李静洁:女,硕士生,研究方向为可重构智能表面、信道估计

    陈前斌:男,教授,博士生导师,研究方向为个人通信、多媒体信息处理与传输、下一代移动通信网络

    金石:男,教授,研究方向为5G、6G移动通信理论与关键技术、现代信号处理及其在移动通信中的应用、智能超表面等

    通讯作者:

    蒲旭敏 puxm@cqupt.edu.cn

  • 中图分类号: TN92

A Low Complexity Millimeter Wave Channel Tracking Algorithm in Reconfigurable Intelligent Surface

Funds: The National Natural Science Foundation of China (61701062), China Postdoctoral Science Foundation (2019M651649), Jiangsu Planned Projects for Postdoctoral Research Funds (2018K041c), The Science and Technology Research Program of Chongqing Municipal Education Commission (KJQN202100649, KJQN202000612)
  • 摘要: 针对可重构智能表面(RIS)中的毫米波通信系统,用户至RIS端信道角度参数的缓慢变化,该文提出一种基于牛顿算法的低复杂度信道追踪方案。该方案将RIS部分元件连接射频(RF)链,首先使用2维快速傅里叶变换 (2D-FFT)算法初始化估计角度,并且使用最大似然算法估计路径增益。在后续时隙中,使用牛顿算法追踪每个时隙的角度参数。由于环境突然变化和终端缓慢变化会导致信道矩阵发生突变,若检测到信道突变,则再次初始化参数,否则使用牛顿算法继续追踪角度参数。仿真结果表明,该方案在具有优良性能的前提下复杂度可以达到最低,极大节约算力资源,在计算复杂度和性能之间可以取得很好的平衡。
  • 图  1  RIS辅助上行无线通信系统

    图  2  不同算法NMSE与SNR的对比曲线

    图  3  不同算法NMSE与角度变化方差的对比曲线

    图  4  不同算法NMSE与时隙的对比曲线

    算法1 基于牛顿算法的信道追踪方案
     输入:时隙数:$ t = 1,2,\cdots,I $;导频信号:${\boldsymbol{\varGamma}} (t)$;RIS接收信号:${\boldsymbol{Y}}_{\text{R} }^{\text{h} }(t)$,${\boldsymbol{Y}}_{\text{R} }^{\text{v} }(t)$;BS接收信号:$ {\boldsymbol{Y}}(t) $;循环次数:$ {R_{\text{c}}} $
     输出:UE-RIS信道估计值$ {{\hat {\boldsymbol H}}}(t) $;RIS-BS信道估计值$ {{\hat {\boldsymbol G}}} $
     for $ {l_a} = 1,2,\cdots,{L_a} $
     (1)$ {\text{when }}t = 1 $,2D-FFT求解角度:根据式(15)、式(16)、式(17)分别计算$ \hat \varphi _{\boldsymbol{H}}^{{l_a}}(1),\hat \phi _{\boldsymbol{H}}^{{l_a}}(1),\hat \theta _{\boldsymbol{H}}^{{l_a}}(1) $,同理求解$ {\psi _{{l_b}}},{\gamma _{{l_b}}},{\varphi _{{l_b}}} $
             ML求解路径增益:根据式(22)计算$ {a_{{l_a}}}(1) $,同理求解$ {b_{{l_b}}} $
     (2)for $ t = 2,3,\cdots,I $
        for $ k = 1,2,\cdots,{R_{\text{c}}} $
         $ \left[ \begin{gathered} {{\hat u}_{{l_a}}}{(t)^{(k)}} \\ {{\hat v}_{{l_a}}}{(t)^{(k)}} \\ \end{gathered} \right] = \left[ \begin{gathered} {{\hat u}_{{l_a}}}{(t)^{(k - 1)}} \\ {{\hat v}_{{l_a}}}{(t)^{(k - 1)}} \\ \end{gathered} \right] - {{\ddot {\boldsymbol E}}}({\hat u_{{l_a}}}(t - 1),{\hat v_{{l_a}}}(t - 1)) \cdot {{\dot {\boldsymbol E}}}({\hat u_{{l_a}}}(t - 1),{\hat v_{{l_a}}}(t - 1)) $
       end for
        $ {\hat u_{{l_a}}}(t) = {\hat u_{{l_a}}}{(t)^{({R_{\text{c}}})}},{\hat v_{{l_a}}}(t) = {\hat v_{{l_a}}}{(t)^{({R_{\text{c}}})}} $
        求解角度:根据式(15)、式(16)分别计算$ \hat \varphi _{\boldsymbol{H}}^{{l_a}}(t),\hat \phi _{\boldsymbol{H}}^{{l_a}}(t) $,同理求解$ \hat \theta _{\boldsymbol{H}}^{{l_a}}(t) $
        估计增益:根据式(22)计算$ {a_{{l_a}}}(t) $
        信道突变检测:若$\ln (L({\boldsymbol{Y}}_{\text{R} }^{ {\text{h} }' }(t))) > \gamma$;返回步骤1
      end for
     end for
     (3)输出信道估计值$\hat {\boldsymbol{H} }(t) = \displaystyle\sum\nolimits_{ {l_a} = 1}^{ {L_a} } { { {\hat a}_{ {l_a} } }(t){\boldsymbol{a} }_{ {\text{UR} } }^{}(\hat \theta _{\boldsymbol{H} }^{ {l_a} }(t),\hat \phi _{\boldsymbol{H} }^{ {l_a} }(t)){ {{\boldsymbol{a} }_{\text{U} }^{\text{H} }(\hat \varphi _{\boldsymbol{H} }^{ {l_a} }(t))} } } {\text{, } }\hat {\boldsymbol{G} }{\text{ = } }\displaystyle\sum\nolimits_{ {l_b} = 1}^{ {L_b} } { { {\hat b}_{ {l_b} } }{ {\boldsymbol{a} }_{\text{B} } }({ {\hat \psi }_{ {l_b} } }){ {{\boldsymbol{a} }_{ {\text{RB} } }^{\text{H} }({ {\hat \gamma }_{ {l_b} } },{ {\hat \varphi }_{ {l_b} } })} } }$
    下载: 导出CSV

    表  1  不同算法计算复杂度对比

    所用算法计算复杂度
    LS算法$ O({N_{\text{T}}}^3 + N_{\text{T}}^2(2(T - 1) + 1 + 2N_{\text{I}}^{}) + 2N_{\text{I}}^{}N_{\text{T}}^{}(T - 1) + {N_{\text{T}}}) $
    LMMSE算法$ O(2N_{\text{T}}^3 + N_{\text{T}}^2(2(T - 1) + 1 + 8N_{\text{I}}^{}) + 2N_{\text{I}}^{}N_{\text{T}}^{}(T - 2) + 4N_{\text{T}}^{}) $
    KF算法$O(16L_a^3 + {(L{N_{\text{T} } })^3} + {(L{N_{\text{T} } })^2}(4{L_a} + 1) + 2{L_a}^2(4L{N_{\text{T} } } + 3{N_{\text{T} } } + 2L + 1) + 2L{N_{\text{T} } }({L_a} + 1) - {L_a}L)$
    本文算法$O(8{L_a}^3 + 2{L_a}^2(3{N_{\text{T} } } + 2L - 1) + ({L_a} - 1)(2L{N_{\text{T} } } + {N_{\text{T} } }(4L - 2) + 22{R_{\text{c} } }) + L{N_{\text{T} } }(2T - 1) - {L_a}L) \\$
    下载: 导出CSV

    表  2  主要仿真参数设置

    参数数值
    UE端天线数$ {N_{\text{T}}} $$ 5 $
    RIS端反射单元数$ {N_{\text{I}}} $$ 40 $
    BS端天线数$ {N_{\text{R}}} $$ 64 $
    RIS连接水平/竖直RF链数$ L $$ 5 $
    UE-RIS路径数$ {L_a} $$ 1 $
    载波频率$ {f_{\text{c}}} $$ 30{\text{ GHz}} $
    UE端离开角$ \hat \varphi _{\mathbf{H}}^{{l_a}} $$ {50^ \circ } $
    RIS端仰角$ \theta _{\mathbf{H}}^{{l_a}} $和水平角$ \phi _{\mathbf{H}}^{{l_a}} $$ {30}^{\circ }和{20}^{\circ } $
    下载: 导出CSV
  • [1] HAN Huimei, ZHAO Jun, ZHAI Wenchao, et al. Reconfigurable intelligent surface aided power control for physical-layer broadcasting[J]. IEEE Transactions on Communications, 2021, 69(11): 7821–7836. doi: 10.1109/TCOMM.2021.3104871
    [2] WU Qingqing and ZHANG Rui. Towards smart and reconfigurable environment: Intelligent reflecting surface aided wireless network[J]. IEEE Communications Magazine, 2020, 58(1): 106–112. doi: 10.1109/MCOM.001.1900107
    [3] ZHENG Beixiong and ZHANG Rui. Intelligent reflecting surface-enhanced OFDM: Channel estimation and reflection optimization[J]. IEEE Wireless Communications Letters, 2020, 9(4): 518–522. doi: 10.1109/LWC.2019.2961357
    [4] PANG Xiaowei, SHENG Min, ZHAO Nan, et al. When UAV meets IRS: Expanding air-ground networks via passive reflection[J]. IEEE Wireless Communications, 2021, 28(5): 164–170. doi: 10.1109/MWC.010.2000528
    [5] YANG Liang, YANG Jinxia, XIE Wenwu, et al. Secrecy performance analysis of RIS-aided wireless communication systems[J]. IEEE Transactions on Vehicular Technology, 2020, 69(10): 12296–12300. doi: 10.1109/TVT.2020.3007521
    [6] HUR S, KIM T, LOVE D J, et al. Millimeter wave beamforming for wireless backhaul and access in small cell networks[J]. IEEE Transactions on Communications, 2013, 61(10): 4391–4403. doi: 10.1109/TCOMM.2013.090513.120848
    [7] JENSEN T L and DE CARVALHO E. An optimal channel estimation scheme for intelligent reflecting surfaces based on a minimum variance unbiased estimator[C]. 2020 IEEE International Conference on Acoustics, Speech and Signal Processing, Barcelona, Spain, 2020: 5000–5004.
    [8] 李素月, 郝红婷, 王安红. IRS辅助的多天线系统下行链路低复杂度信道估计[J]. 电讯技术, 2022, 62(4): 466–472. doi: 10.3969/j.issn.1001-893x.2022.04.009

    LI Suyue, HAO Hongting, and WANG Anhong. Low-complexity channel estimation for IRS-aided multi-antenna downlink systems[J]. Telecommunication Engineering, 2022, 62(4): 466–472. doi: 10.3969/j.issn.1001-893x.2022.04.009
    [9] HE Zhenqing and YUAN Xiaojun. Cascaded channel estimation for large intelligent metasurface assisted massive MIMO[J]. IEEE Wireless Communications Letters, 2020, 9(2): 210–214. doi: 10.1109/LWC.2019.2948632
    [10] MAO Zhendong, PENG Mugen, and LIU Xiqing. Channel estimation for reconfigurable intelligent surface assisted wireless communication systems in mobility scenarios[J]. China Communications, 2021, 18(3): 29–38. doi: 10.23919/JCC.2021.03.003
    [11] CAI Penghao, ZONG Jun, LUO Xiliang, et al. Downlink channel tracking for intelligent reflecting surface-aided FDD MIMO systems[J]. IEEE Transactions on Vehicular Technology, 2021, 70(4): 3341–3353. doi: 10.1109/TVT.2021.3063138
    [12] HE Jiguang, NGUYEN N T, SCHROEDER R, et al. Channel estimation and hybrid architectures for RIS-assisted communications[C]. 2021 Joint European Conference on Networks and Communications & 6G Summit, Porto, Portugal, 2021: 60–65.
    [13] HE Jiguang, WYMEERSCH H, and JUNTTI M. Channel estimation for RIS-aided mmWave MIMO systems via atomic norm minimization[J]. IEEE Transactions on Wireless Communications, 2021, 20(9): 5786–5797. doi: 10.1109/TWC.2021.3070064
    [14] ALEXANDROPOULOS G C and VLACHOS E. A hardware architecture for reconfigurable intelligent surfaces with minimal active elements for explicit channel estimation[C]. 2020 IEEE International Conference on Acoustics, Speech and Signal Processing, Barcelona, Spain, 2020: 9175–9179.
    [15] TAHA A, ALRABEIAH M, and ALKHATEEB A. Enabling large intelligent surfaces with compressive sensing and deep learning[J]. IEEE Access, 2021, 9(1): 44304–44321. doi: 10.1109/ACCESS.2021.3064073
    [16] CHEN Xiao, SHI Jianfeng, YANG Zhaohui, et al. Low-complexity channel estimation for intelligent reflecting surface-enhanced massive MIMO[J]. IEEE Wireless Communications Letters, 2021, 10(5): 996–1000. doi: 10.1109/LWC.2021.3054004
    [17] FAN Dian, GAO Feifei, WANG Gongpu, et al. Angle domain signal processing-aided channel estimation for indoor 60-GHz TDD/FDD massive MIMO systems[J]. IEEE Journal on Selected Areas in Communications, 2017, 35(9): 1948–1961. doi: 10.1109/JSAC.2017.2720938
    [18] ZHANG Chuang, GUO Dongning, and FAN Pingyi. Tracking angles of departure and arrival in a mobile millimeter wave channel[C]. 2016 IEEE International Conference on Communications, Kuala Lumpur, Malaysia, 2016: 1–6.
    [19] ABATZOGLOU T J. A fast maximum likelihood algorithm for frequency estimation of a sinusoid based on newton's method[J]. IEEE Transactions on Acoustics, Speech, and Signal Processing, 1985, 33(1): 77–89. doi: 10.1109/TASSP.1985.1164541
    [20] MAMANDIPOOR B, RAMASAMY D, and MADHOW U. Newtonized orthogonal matching pursuit: Frequency estimation over the continuum[J]. IEEE Transactions on Signal Processing, 2016, 64(19): 5066–5081. doi: 10.1109/TSP.2016.2580523
    [21] KAY S M. Fundamentals of Statistical Signal Processing[M]. Englewood Cliffs: Prentice Hall Press, 1993: 425–506.
  • 加载中
图(4) / 表(3)
计量
  • 文章访问数:  466
  • HTML全文浏览量:  157
  • PDF下载量:  84
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-06-30
  • 修回日期:  2022-10-28
  • 网络出版日期:  2022-11-05
  • 刊出日期:  2023-08-21

目录

    /

    返回文章
    返回