高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于正负频偏脉压相参积累的移频干扰鉴别方法

温镇铭 王国宏 张亮 于洪波

温镇铭, 王国宏, 张亮, 于洪波. 基于正负频偏脉压相参积累的移频干扰鉴别方法[J]. 电子与信息学报. doi: 10.11999/JEIT220873
引用本文: 温镇铭, 王国宏, 张亮, 于洪波. 基于正负频偏脉压相参积累的移频干扰鉴别方法[J]. 电子与信息学报. doi: 10.11999/JEIT220873
WEN Zhenming, WANG Guohong, ZHANG Liang, YU Hongbo. Frequency-shift Jamming Identification Methods Based on Positive and Negative Frequency Shift Pulse Compression Coherent Integration[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT220873
Citation: WEN Zhenming, WANG Guohong, ZHANG Liang, YU Hongbo. Frequency-shift Jamming Identification Methods Based on Positive and Negative Frequency Shift Pulse Compression Coherent Integration[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT220873

基于正负频偏脉压相参积累的移频干扰鉴别方法

doi: 10.11999/JEIT220873
基金项目: 国家自然科学基金(61731023),山东省自然科学基金面上项目(ZR2020MF015)
详细信息
    作者简介:

    温镇铭:男,博士生,研究方向为雷达抗干扰

    王国宏:男,博士,教授,研究方向为多源信息融合、雷达组网、微弱目标跟踪

    张亮:男,博士,研究方向为雷达抗干扰

    于洪波:男,博士,讲师,研究方向为雷达数据处理、雷达情报分析、雷达抗干扰等

    通讯作者:

    温镇铭 935838465@qq.com

  • 中图分类号: TN974

Frequency-shift Jamming Identification Methods Based on Positive and Negative Frequency Shift Pulse Compression Coherent Integration

Funds: The National Natural Science Foundation of China (61731023), Shandong Provincial Natural Science Foundation of China (ZR2020MF015)
  • 摘要: 基于数字射频存储器产生的移频干扰是一种针对线性调频信号(LFM)脉冲雷达的欺骗干扰,所产生的导前或滞后假目标由于诸多特性与真实目标相似因而难以鉴别。为有效对抗移频干扰,该文通过研究移频干扰信号的脉冲压缩过程,得出存在频率差的两信号进行时域卷积后输出能量与频率差成负相关的结论。该文利用这一结论设计带有正、负频率偏移的失配滤波器,滤波器在与雷达回波信号进行时域卷积、相参积累后将出现真实目标和干扰信号的峰值差异,进而鉴别移频干扰。该文提出的移频干扰鉴别方法工程实用性强,是在以自卫式干扰条件下常规LFM脉冲多普勒雷达对抗移频干扰的有效方法。通过仿真试验验证了所提方法的有效性。
  • 图  1  匹配滤波器及移频干扰信号频谱包络

    图  2  处理结果示意图

    图  3  移频干扰鉴别流程

    图  4  一个CPI受干扰回波

    图  5  受干扰回波脉冲压缩图

    图  6  受干扰回波脉压相参积累结果

    图  7  正、负频偏脉压相参积累结果图

    图  8  峰值差结果图

    图  9  干扰移频量与峰值差关系图

    图  10  偏移频率与峰值差关系图

    图  11  正负偏移频率与峰值差关系图

    图  12  干扰处理结果图

    图  13  移频干扰鉴别结果

    图  14  真实目标识别准确率随信噪比变化曲线

    图  15  干扰识别准确率随信噪比变化曲线

    图  16  真实目标识别准确率与干信比曲线

    图  17  干扰识别准确率与干信比曲线

  • [1] 冯德军, 王俊杰, 王俊卿. 移频导前假目标的特性分析及其鉴别方法[J]. 雷达学报, 2017, 6(4): 325–331. doi: 10.12000/JR17026

    FENG Dejun, WANG Junjie, and WANG Junqing. Signature analysis and discrimination method of preceded frequency-shift false target[J]. Journal of Radars, 2017, 6(4): 325–331. doi: 10.12000/JR17026
    [2] GRECO M, GINI F, and FARINA A. Radar detection and classification of jamming signals belonging to a cone class[J]. IEEE Transactions on Signal Processing, 2008, 56(5): 1984–1993. doi: 10.1109/TSP.2007.909326
    [3] 张克舟, 李青山, 张恒, 等. LFM脉冲压缩雷达的随机移频多假目标干扰技术研究[J]. 电光与控制, 2014, 21(8): 106–109. doi: 10.3969/j.issn.1671-637X.2014.08.023

    ZHANG Kezhou, LI Qingshan, ZHANG Heng, et al. Random frequency-shift for multi-false-target jamming of LFM pulse compression radar[J]. Electronics Optics &Control, 2014, 21(8): 106–109. doi: 10.3969/j.issn.1671-637X.2014.08.023
    [4] 房明星, 毕大平, 沈爱国. SAR多普勒移频间歇采样转发干扰方法[J]. 系统工程与电子技术, 2016, 38(10): 2287–2295. doi: 10.3969/j.issn.1001-506X.2016.10.10

    FANG Mingxing, BI Daping, and SHEN Aiguo. Doppler shift-frequency intermittent sampling repeater jamming for SAR[J]. Systems Engineering and Electronics, 2016, 38(10): 2287–2295. doi: 10.3969/j.issn.1001-506X.2016.10.10
    [5] 赵忠凯, 周文彬, 李虎. 基于非整数阶SSC盲移频的LFM雷达干扰技术[J]. 电子与信息学报, 2021, 43(10): 2824–2831. doi: 10.11999/JEIT200748

    ZHAO Zhongkai, ZHOU Wenbin, and LI Hu. LFM radar jamming technology based on non-integer order SSC blind frequency shift[J]. Journal of Electronics &Information Technology, 2021, 43(10): 2824–2831. doi: 10.11999/JEIT200748
    [6] 畅鑫, 董春曦, 唐峥钊, 等. 对SAR的脉间周期式移频调制干扰[J]. 电子与信息学报, 2018, 40(2): 470–478. doi: 10.11999/JEIT170439

    CHANG Xin, DONG Chunxi, TANG Zhengzhao, et al. Inter-pulse periodical shift-frequency jamming against synthetic aperture radar[J]. Journal of Electronics &Information Technology, 2018, 40(2): 470–478. doi: 10.11999/JEIT170439
    [7] 程林, 张建民, 杨爱平. 基于LFM脉冲压缩雷达的移频干扰仿真研究[J]. 舰船电子对抗, 2020, 43(6): 53–56. doi: 10.16426/j.cnki.jcdzdk.2020.06.012

    CHENG Lin, ZHANG Jianmin, and YANG Aiping. Research into frequency-shift jamming simulation based on LFM pulse compression radar[J]. Shipboard Electronic Countermeasure, 2020, 43(6): 53–56. doi: 10.16426/j.cnki.jcdzdk.2020.06.012
    [8] 周文彬, 赵忠凯, 郭晓冉. 基于SSC盲移频的NLFM雷达干扰技术研究[J]. 舰船电子对抗, 2021, 44(3): 103–106. doi: 10.16426/j.cnki.jcdzdk.2021.03.022

    ZHOU Wenbin, ZHAO Zhongkai, and GUO Xiaoran. Research into jamming technology to NLFM radar based on SSC blind frequency shift[J]. Shipboard Electronic Countermeasure, 2021, 44(3): 103–106. doi: 10.16426/j.cnki.jcdzdk.2021.03.022
    [9] 刘桂坤, 李亮, 洪峻, 等. 基于有源转发器的移频干扰研究[J/OL]. 现代雷达. http://kns.cnki.net/kcms/detail/32.1353.tn.20220308.1009.002.html, 2022.

    LIU Guikun, LI Liang, HONG Jun, et al. Study of shift-frequency jamming based on active radar transponder[J/OL]. Modern Radar. http://kns.cnki.net/kcms/detail/32.1353.tn.20220308.1009.002.html, 2022.
    [10] SOUMEKH M. SAR-ECCM using phase-perturbed LFM chirp signals and DRFM repeat jammer penalization[J]. IEEE Transactions on Aerospace and Electronic Systems, 2006, 42(1): 191–205. doi: 10.1109/TAES.2006.1603414
    [11] HANBALI S B S and KASTANTIN R. Countering a self-protection frequency-shifting jamming against LFM pulse compression radars[J]. International Journal of Electronics and Telecommunications, 2017, 63(2): 145–150. doi: 10.1515/eletel-2017-0019
    [12] 王文光, 季彧, 任欣. 基于LFM波形的极化雷达移频干扰鉴别[J]. 中国电子科学研究院学报, 2017, 12(1): 78–84. doi: 10.3969/j.issn.1673-5692.2017.01.014

    WANG Wenguang, JI Yu, and REN Xin. Frequency shift jamming discrimination based on LFM waveform of polarimetric radar[J]. Journal of China Academy of Electronics and Information Technology, 2017, 12(1): 78–84. doi: 10.3969/j.issn.1673-5692.2017.01.014
    [13] 刘忠, 陈登伟, 谢晓霞, 等. LFM脉冲压缩雷达抗移频干扰的方法研究[J]. 现代雷达, 2006, 28(11): 84–86. doi: 10.3969/j.issn.1004-7859.2006.11.024

    LIU Zhong, CHEN Dengwei, XIE Xiaoxia, et al. A countering technique for LFM PC radar against shift-frequency jamming[J]. Modern Radar, 2006, 28(11): 84–86. doi: 10.3969/j.issn.1004-7859.2006.11.024
    [14] HANBALI S B S and KASTANTIN R. Fractional Fourier transform-based chirp radars for countering self-protection frequency-shifting jammers[J]. International Journal of Microwave and Wireless Technologies, 2017, 9(8): 1687–1693. doi: 10.1017/S1759078717000289
    [15] 张亮, 王国宏, 张翔宇, 等. LFM雷达对抗移频干扰方法研究[J]. 电子学报, 2021, 49(3): 510–517. doi: 10.12263/DZXB.20191334

    ZHANG Liang, WANG Guohong, ZHANG Xiangyu, et al. The research on LFM radar countering frequency-shift jamming methods[J]. Acta Electronica Sinica, 2021, 49(3): 510–517. doi: 10.12263/DZXB.20191334
    [16] 张亮, 王国宏, 杨志国, 等. 利用回波时频相关差异的雷达欺骗干扰识别方法[J]. 西安交通大学学报, 2021, 55(2): 136–142. doi: 10.7652/xjtuxb202102016

    ZHANG Liang, WANG Guohong, YANG Zhiguo, et al. Methods for identifying radar deception jamming using time-frequency correlation difference of echo[J]. Journal of Xi'an Jiaotong University, 2021, 55(2): 136–142. doi: 10.7652/xjtuxb202102016
    [17] 李欣, 王春阳, 付孝龙, 等. 极化通道扩展和盲源分离联合抗移频干扰技术[J]. 北京航空航天大学学报, 2017, 43(4): 733–737. doi: 10.13700/j.bh.1001-5965.2016.0250

    LI Xin, WANG Chunyang, FU Xiaolong, et al. Shift-frequency jamming suppression technique based on polarized channel expanding and blind source separation union[J]. Journal of Beijing University of Aeronautics and Astronautics, 2017, 43(4): 733–737. doi: 10.13700/j.bh.1001-5965.2016.0250
    [18] 王满玉, 程柏林. 雷达抗干扰技术[M]. 北京: 国防工业出版社, 2016: 63–64.

    WANG Manyu and CHENG Bolin. Radar anti-jamming technology[M]. Beijing: National Defense Industry Press, 2016: 63–64.
    [19] 周文彬. 脉冲压缩体制雷达的干扰样式研究[D]. [硕士论文], 哈尔滨工程大学, 2021.

    ZHOU Wenbin. Research on the jamming pattern of pulse compression system radar[D]. [Master dissertation], Harbin Engineering University, 2021.
    [20] BARNETT V and LEWIS T. Outliers in statistical data[M]. 3rd ed. Chichester: Wiley & Sons, 1994: 210–214.
  • 加载中
图(17)
计量
  • 文章访问数:  39
  • HTML全文浏览量:  15
  • PDF下载量:  8
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-06-30
  • 录用日期:  2023-01-11
  • 修回日期:  2022-12-27
  • 网络出版日期:  2023-01-15

目录

    /

    返回文章
    返回