高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

车联网中可证安全的分布式匿名高效边缘认证协议

张海波 兰凯 黄宏武 王汝言 邹灿

张海波, 兰凯, 黄宏武, 王汝言, 邹灿. 车联网中可证安全的分布式匿名高效边缘认证协议[J]. 电子与信息学报, 2023, 45(8): 2902-2910. doi: 10.11999/JEIT220846
引用本文: 张海波, 兰凯, 黄宏武, 王汝言, 邹灿. 车联网中可证安全的分布式匿名高效边缘认证协议[J]. 电子与信息学报, 2023, 45(8): 2902-2910. doi: 10.11999/JEIT220846
ZHANG Haibo, LAN Kai, HUANG Hongwu, WANG Ruyan, ZOU Can. Provably Secure Distributed Efficient Edge Authentication Protocol with Anonymity in Internet of Vehicles[J]. Journal of Electronics & Information Technology, 2023, 45(8): 2902-2910. doi: 10.11999/JEIT220846
Citation: ZHANG Haibo, LAN Kai, HUANG Hongwu, WANG Ruyan, ZOU Can. Provably Secure Distributed Efficient Edge Authentication Protocol with Anonymity in Internet of Vehicles[J]. Journal of Electronics & Information Technology, 2023, 45(8): 2902-2910. doi: 10.11999/JEIT220846

车联网中可证安全的分布式匿名高效边缘认证协议

doi: 10.11999/JEIT220846
基金项目: 国家自然科学基金(61901071, 61801065),长江学者和创新团队发展计划基金(IRT16R72),重庆市留创计划创新类资助项目(cx2020059)
详细信息
    作者简介:

    张海波:男,博士,副教授,研究方向为车联网、区块链、安全认证等

    兰凯:男,硕士生,研究方向为车联网、认证协议、密钥协商等

    黄宏武:男,硕士,研究方向为车联网、认证协议等

    王汝言:男,博士,教授,研究方向为泛在网络、多媒体信息处理等

    邹灿:男,硕士,高级咨询顾问,研究方向为大数据、信息安全、数字经济等

    通讯作者:

    兰凯 2396128830@qq.com

  • 中图分类号: TN915

Provably Secure Distributed Efficient Edge Authentication Protocol with Anonymity in Internet of Vehicles

Funds: The National Natural Science Foundation of China (61901071, 61801065), The Program for Changjiang Scholars and Innovative Research Teamin University (IRT16R72), Chongqing Innovation and Entrepreneurship Program for the Returned Overseas Chinese Scholars (cx2020059)
  • 摘要: 针对当前车联网(IoV)中的分布式认证协议直接依赖于半可信路边单元(RSU)的问题,该文提出一种新的分布式认证模型。该模型中的RSU通过3阶段广播自发建立边缘认证区,利用区域内的RSU同步保存车辆的认证记录,RSU可以通过校验节点同步保存的认证记录来防止恶意RSU的异常认证行为。然后,利用切比雪夫混沌映射设计了IoV中的分布式匿名认证协议,通过车辆发送消息不直接携带身份信息的方式来避免假名机制所带来的存储负担。最后,利用随机预言机对协议安全性进行了证明。仿真结果表明所提方案具有更低的认证时延和通信成本。
  • 图  1  场景模型

    图  2  RSU之间的3次相互广播

    图  3  认证域的申请

    图  4  边缘认证

    图  5  认证区域数据块结构

    图  6  各方案下的用户端计算时延

    图  7  各方案下的边缘服务器端计算时延

    图  8  各方案下的通信开销

    表  1  认证时延对比(ms)

    方案用户端边缘服务器端
    文献[11]${\text{5} }{ { {T} }_{\text{h} } }{\text{ + } }{ { {T} }_{\text{e} } }{\text{ + 4} }{ { {T} }_{ {\text{mul} } } } \approx 0.418\;8$${\text{4} }{ { {T} }_{\text{h} } }{\text{ + 2} }{ { {T} }_{\text{e} } }{\text{ + 4} }{ { {T} }_{\text{p} } }{\text{ + 2} }{ { {T} }_{ {\text{mul} } } } \approx 5.497\;6$
    文献[12]${\text{7} }{ { {T} }_{\text{h} } }{\text{ + 2} }{ { {T} }_{\text{e} } }{\text{ + 2} }{ { {T} }_{\text{p} } }{\text{ + 4} }{ { {T} }_{ {\text{mul} } } } \approx 3.116\;2$${\text{5} }{ { {T} }_{\text{h} } }{\text{ + 2} }{ { {T} }_{\text{e} } }{\text{ + 4} }{ { {T} }_{\text{p} } }{\text{ + 3} }{ { {T} }_{ {\text{mul} } } } \approx 5.557\;0$
    文献[13]${\text{5} }{ { {T} }_{\text{h} } }{\text{ + } }{ { {T} }_{\text{e} } }{\text{ + 4} }{ { {T} }_{ {\text{mul} } } } \approx 0.418\;8$${\text{5} }{ { {T} }_{\text{h} } }{\text{ + } }{ { {T} }_{\text{p} } }{\text{ + 6} }{ { {T} }_{ {\text{mul} } } } \approx 1.602\;5$
    文献[7]${\text{10} }{ { {T} }_{\text{h} } }{\text{ + 30} }{ { {T} }_{ {\text{mul} } } } \approx 1.622\;0$${\text{5} }{ { {T} }_{\text{h} } }{\text{ + 7} }{ { {T} }_{ {\text{mul} } } } \approx 0.399\;8$
    本文${\text{2} }{ { {T} }_{\text{h} } }{\text{ + 8} }{ { {T} }_{ {\text{chev} } } } \approx 0.284\;8$${\text{2} }{ { {T} }_{\text{h} } }{\text{ + 6} }{ { {T} }_{ {\text{chev} } } } \approx 0.217\;6$
    下载: 导出CSV

    表  2  通信轮数及通信开销对比

    方案通信轮数通信开销(bit)
    文献[11]4$3|{ { {W} }_{ {\text{mul} } } }| + |{ { {W} }_{\text{p} } }| + |{ { {W} }_{\text{H} } }| + |{ { {W} }_{ {\text{ID} } } }| = 4\;608$
    文献[12]4$4|{ { {W} }_{ {\text{mul} } } }| + |{ { {W} }_{\text{p} } }{\text{|} } + |{ { {W} }_{\text{H} } }| + |{ { {W} }_{ {\text{ID} } } }| = 5\;632$
    文献[13]2$4|{ { {W} }_{ {\text{mul} } } }| + 2|{ { {W} }_{\text{T} } }| + 2|{ { {W} }_{ { {\text{Z} }_{\text{q} } } }}| + |{ { {W} }_{ {\text{ID} } } }| = 4\;736$
    文献[7]2$2|{ { {W} }_{ {\text{mul} } } }| + 2|{ { {W} }_{\text{T} } }| + 4|{ { {W} }_{ {\text{ID} } } }| + 2|{ { {W} }_{\text{R} } }| = 3\;392$
    本文3$7|{ { {W} }_{ {\text{chev} } } }| = 3\;360$
    下载: 导出CSV
  • [1] SUN Yunchuan, WU Lei, WU Shizhong, et al. Security and privacy in the internet of vehicles[C]. Proceedings of 2015 International Conference on Identification, Information, and Knowledge in the Internet of Things (IIKI), Beijing, China, 2015: 116–121.
    [2] YING Bidi and NAYAK A. Anonymous and lightweight authentication for secure vehicular networks[J]. IEEE Transactions on Vehicular Technology, 2017, 66(12): 10626–10636. doi: 10.1109/TVT.2017.2744182
    [3] CHEN C M, XIANG Bin, LIU Yining, et al. A secure authentication protocol for internet of vehicles[J]. IEEE Access, 2019, 7: 12047–12057. doi: 10.1109/ACCESS.2019.2891105
    [4] CUI Jie, WANG Yali, ZHANG Jing, et al. Full session key agreement scheme based on chaotic map in vehicular Ad hoc networks[J]. IEEE Transactions on Vehicular Technology, 2020, 69(8): 8914–8924. doi: 10.1109/TVT.2020.2997694
    [5] WEI Lu, CUI Jie, ZHONG Hong, et al. Proven secure tree-based authenticated key agreement for securing V2V and V2I communications in VANETs[J]. IEEE Transactions on Mobile Computing, 2022, 21(9): 3280–3297. doi: 10.1109/TMC.2021.3056712
    [6] CHUANG M C and LEE J F. TEAM: Trust-extended authentication mechanism for vehicular Ad hoc networks[J]. IEEE Systems Journal, 2014, 8(3): 749–758. doi: 10.1109/JSYST.2012.2231792
    [7] YAO Yingying, CHANG Xiaolin, MIŠIĆ J, et al. BLA: Blockchain-assisted lightweight anonymous authentication for distributed vehicular fog services[J]. IEEE Internet of Things Journal, 2019, 6(2): 3775–3784. doi: 10.1109/JIOT.2019.2892009
    [8] 刘雪艳, 王力, 郇丽娟, 等. 车联网环境下无证书匿名认证方案[J]. 电子与信息学报, 2022, 44(1): 295–304. doi: 10.11999/JEIT201069

    LIU Xueyan, WANG Li, HUAN Lijuan, et al. Certificateless anonymous authentication scheme for internet of vehicles[J]. Journal of Electronics &Information Technology, 2022, 44(1): 295–304. doi: 10.11999/JEIT201069
    [9] LI Jiangtao, LI Yufeng, CAO Chenhong, et al. Conditional anonymous authentication with abuse-resistant tracing and distributed trust for internet of vehicles[J]. IEEE Internet of Things Journal, 2022, 9(11): 8749–8762. doi: 10.1109/JIOT.2021.3116422
    [10] VIJAYAKUMAR P, AZEES M, KOZLOV S A, et al. An anonymous batch authentication and key exchange protocols for 6G enabled VANETs[J]. IEEE Transactions on Intelligent Transportation Systems, 2022, 23(2): 1630–1638. doi: 10.1109/TITS.2021.3099488
    [11] TSAI J L and LO N W. A privacy-aware authentication scheme for distributed mobile cloud computing services[J]. IEEE Systems Journal, 2015, 9(3): 805–815. doi: 10.1109/JSYST.2014.2322973
    [12] IRSHAD A, SHER M, AHMAD H F, et al. An improved multi-server authentication scheme for distributed mobile cloud computing services[J]. KSII Transactions on Internet and Information Systems, 2016, 10(12): 6092–6115. doi: 10.3837/TIIS.2016.12.021
    [13] JIA Xiaoying, HE Debiao, KUMAR N, et al. A provably secure and efficient identity-based anonymous authentication scheme for mobile edge computing[J]. IEEE Systems Journal, 2020, 14(1): 560–571. doi: 10.1109/JSYST.2019.2896064
    [14] KUMAR A and OM H. An enhanced and provably secure authentication protocol using Chebyshev chaotic maps for multi-server environment[J]. Multimedia Tools and Applications, 2021, 80(9): 14163–14189. doi: 10.1007/s11042-020-10320-x
    [15] BAGGA P, DAS A K, WAZID M, et al. Authentication protocols in Internet of vehicles: Taxonomy, analysis, and challenges[J]. IEEE Access, 2020, 8: 54314–54344. doi: 10.1109/ACCESS.2020.2981397
    [16] LAI Chengzhe, ZHANG Min, CAO Jie, et al. SPIR: A secure and privacy-preserving incentive scheme for reliable real-time map updates[J]. IEEE Internet of Things Journal, 2020, 7(1): 416–428. doi: 10.1109/JIOT.2019.2953188
  • 加载中
图(8) / 表(2)
计量
  • 文章访问数:  545
  • HTML全文浏览量:  194
  • PDF下载量:  84
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-06-27
  • 修回日期:  2022-11-10
  • 网络出版日期:  2022-11-11
  • 刊出日期:  2023-08-21

目录

    /

    返回文章
    返回