高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于扩展OTSM图的滑动型散射中心建模方法

胡杰民 陈锡清 邹博 蔡伟柯

胡杰民, 陈锡清, 邹博, 蔡伟柯. 基于扩展OTSM图的滑动型散射中心建模方法[J]. 电子与信息学报, 2023, 45(8): 2927-2935. doi: 10.11999/JEIT220838
引用本文: 胡杰民, 陈锡清, 邹博, 蔡伟柯. 基于扩展OTSM图的滑动型散射中心建模方法[J]. 电子与信息学报, 2023, 45(8): 2927-2935. doi: 10.11999/JEIT220838
HU Jiemin, CHEN Xiqing, ZOU Bo, CAI Weike. Modeling Method of Sliding Scattering Center Based on Extended OTSM Graph[J]. Journal of Electronics & Information Technology, 2023, 45(8): 2927-2935. doi: 10.11999/JEIT220838
Citation: HU Jiemin, CHEN Xiqing, ZOU Bo, CAI Weike. Modeling Method of Sliding Scattering Center Based on Extended OTSM Graph[J]. Journal of Electronics & Information Technology, 2023, 45(8): 2927-2935. doi: 10.11999/JEIT220838

基于扩展OTSM图的滑动型散射中心建模方法

doi: 10.11999/JEIT220838
基金项目: 国防科技重点实验室基金(WDZC20205500208)
详细信息
    作者简介:

    胡杰民:男,教授,主要研究方向为雷达成像、雷达信号处理、雷达目标特性分析等

    陈锡清:男,硕士生,主要研究方向为雷达目标特性分析

    邹博:男,高级工程师,主要研究方向为陆航信息化、航电系统、目标特性建模等

    蔡伟柯:男,高级工程师,主要研究方向为遥感信息处理、SAR图像解译等

    通讯作者:

    陈锡清 370401482@qq.com

  • 中图分类号: TN95

Modeling Method of Sliding Scattering Center Based on Extended OTSM Graph

Funds: Key Laboratory of National Defense Science and Technology Fundation (WDZC20205500208)
  • 摘要: 雷达目标散射中心建模是雷达目标特性分析与雷达目标识别中的关键步骤,光滑流线型结构在雷达目标上的广泛应用,给传统散射中心建模带来了巨大挑战。该文针对滑动散射中心建模开展研究,首先分别基于曲面边缘散射和曲面散射两种情况,推导了滑动散射中心的位置表达式;其次,提出一种基于扩展1维-高维(2维/3维)散射映射图(One–Two/Three Dimensional Scattering Mapping, OTSM)的滑动散射中心估计方法,通过相邻视角的投影几何关系推导滑动散射中心的位置;然后,综合RANSAC算法获取的固定散射中心,获得目标完备的散射中心模型。利用暗室测量数据对算法进行了验证,结果表明了该文算法的有效性。
  • 图  1  典型滑动散射中心结构

    图  2  固定散射中心OTSM图

    图  3  滑动散射中心的扩展OTSM图

    图  4  不同视角下的投影直线

    图  5  雷达目标散射中心建模流程图

    图  6  暗室目标实物图

    图  7  原始数据的高分辨距离像

    图  8  全姿态1D SC距离像

    图  9  曲面型滑动散射中心拟合结果

    图  10  散射中心模型比较

    图  11  原始数据与重构数据比较

    图  12  原始数据的采样场景图

    图  13  原始数据的高分辨距离

    图  14  全姿态1D SC距离像图

    图  15  曲线型滑动散射中心位置分布

    图  16  锥台体散射中心模型比较

    图  17  原始数据与重构数据比较

  • [1] KELLER J B. Geometrical theory of diffraction[J]. Journal of the Optical Society of America, 1962, 52(2): 116–130. doi: 10.1364/JOSA.52.000116
    [2] GHASEMI M and SHEIKHI A. Joint scattering center enumeration and parameter estimation in GTD model[J]. IEEE Transactions on Antennas and Propagation, 2020, 68(6): 4786–4798. doi: 10.1109/TAP.2020.2975197
    [3] ZHOU Jianxiong, SHI Zhiguang, CHENG Xiao, et al. Automatic target recognition of SAR images based on global scattering center model[J]. IEEE Transactions on Geoscience and Remote Sensing, 2011, 49(10): 3713–3729. doi: 10.1109/TGRS.2011.2162526
    [4] HUMMEL R. Model-based ATR using synthetic aperture radar[C]. Proceedings of the IEEE 2000 International Radar Conference, Alexandria, USA, 2000: 856–861.
    [5] QU Quanyou, GUO Kunyi, and SHENG Xinqing. An accurate bistatic scattering center model for extended cone-shaped targets[J]. IEEE Transactions on Antennas and Propagation, 2014, 62(10): 5209–5218. doi: 10.1109/TAP.2014.2342761
    [6] QU Quanyou, GUO Kunyi, and SHENG Xinqing. Scattering centers induced by creeping waves on streamlined cone-shaped targets in bistatic mode[J]. IEEE Antennas and Wireless Propagation Letters, 2015, 14: 462–465. doi: 10.1109/LAWP.2014.2367510
    [7] LI Qifeng, GUO Kunyi, SHENG Xinqing, et al. High precise scattering centers models for cone-shaped targets based on induced currents[J]. International Journal of Antennas and Propagation, 2017, 2017: 7482895. doi: 10.1155/2017/7482895
    [8] 马梁, 刘进, 王涛, 等. 旋转对称目标滑动型散射中心的微Doppler特性[J]. 中国科学:信息科学, 2011, 54(9): 1961. doi: 10.1007/s11432-011-4254-3

    MA Liang, LIU Jin, WANG Tao, et al. Micro-Doppler characteristics of sliding-type scattering center on rotationally symmetric target[J]. Science China Information Sciences, 2011, 54(9): 1961. doi: 10.1007/s11432-011-4254-3
    [9] LIU Yuling, WEI Xizhang, PENG Bo, et al. Dimensions estimation for cone-cylinder target based on sliding-type scatterers analysis[J]. Journal of Systems Engineering and Electronics, 2017, 28(1): 10–18. doi: 10.21629/JSEE.2017.01.02
    [10] GUO Kunyi, LI Qifeng, SHENG Xinqing, et al. Sliding scattering center model for extended streamlined targets[J]. Progress in Electromagnetics Research, 2013, 139: 499–516. doi: 10.2528/PIER13032111
    [11] 袁文杰, 郭琨毅, 盛新庆, 等. 基于电流相位特性的滑动散射中心建模方法[J]. 系统工程与电子技术, 2022, 44(6): 1765–1771.

    YUAN Wenjie, GUO Kunyi, SHENG Xinqing, et al. Modeling method of sliding scattering center based on current phase characteristics[J]. Systems Engineering and Electronics, 2022, 44(6): 1765–1771.
    [12] XIAO Guangliang, GUO Kunyi, WU Biyi, et al. Accurate scattering centers modeling for complex conducting targets based on induced currents[J]. Science China Information Sciences, 2021, 64(2): 129303. doi: 10.1007/s11432-019-2746-4
    [13] GUO Kunyi, QU Quanyou, and SHENG Xinqing. Geometry reconstruction based on attributes of scattering centers by using time-frequency representations[J]. IEEE Transactions on Antennas and Propagation, 2016, 64(2): 708–720. doi: 10.1109/TAP.2015.2511779
    [14] 郭琨毅, 牛童瑶, 盛新庆. 散射中心属性对单脉冲雷达测角的影响研究[J]. 电子与信息学报, 2017, 39(9): 2238–2244. doi: 10.11999/JEIT161223

    GUO Kunyi, NIU Tongyao, and SHENG Xinqing. Influence of multiple scattering centers with various attributes on radar angular measurements[J]. Journal of Electronics &Information Technology, 2017, 39(9): 2238–2244. doi: 10.11999/JEIT161223
    [15] 徐志明, 艾小锋, 刘晓斌, 等. 基于散射中心滑动特性的双基地雷达锥体目标微动特征提取方法[J]. 电子学报, 2021, 49(3): 461–469. doi: 10.12263/DZXB.20191261

    XU Zhiming, AI Xiaofeng, LIU Xiaobin, et al. Micro-motion feature extraction of bistatic radar cone-shaped targets based on characteristic analysis of sliding scattering centers[J]. Acta Electronica Sinica, 2021, 49(3): 461–469. doi: 10.12263/DZXB.20191261
    [16] ZHOU Jianxiong, ZHAO Hongzhong, SHI Zhiguang, et al. Global scattering center model extraction of radar targets based on wideband measurements[J]. IEEE Transactions on Antennas and Propagation, 2008, 56(7): 2051–2060. doi: 10.1109/TAP.2008.924698
    [17] WANG Jing and ZHOU Jianjiang. Modified MEMP method for 2D scattering center measurement based on GTD model[C]. Proceedings of 2018 International Conference on Microwave and Millimeter Wave Technology, Nanjing, China, 2008: 987–990.
    [18] 陈建, 王树勋. 基于MEMP算法的二维DOA估计[J]. 系统工程与电子技术, 2007, 29(5): 703–706. doi: 10.3321/j.issn:1001-506X.2007.05.009

    CHEN Jian and WANG Shuxun. Two-dimensional DOA estimation based on MEMP algorithm[J]. Systems Engineering and Electronics, 2007, 29(5): 703–706. doi: 10.3321/j.issn:1001-506X.2007.05.009
    [19] ZHANG Hongming and ZHANG Haoyu. Research on DOA estimation method of sonar radar target based on MUSIC algorithm[J]. Journal of Physics:Conference Series, 2019, 1176(3): 032001. doi: 10.1088/1742-6596/1176/3/032001
    [20] LIU Donghe, ZHAO Yongbo, CAO Chenghu, et al. A novel reduced-dimensional beamspace unitary ESPRIT algorithm for monostatic MIMO radar[J]. Digital Signal Processing, 2021, 114: 103027. doi: 10.1016/j.dsp.2021.103027
    [21] HU Jiemin, WANG Wei, ZHAI Qinglin, et al. Global scattering center extraction for radar targets using a modified RANSAC method[J]. IEEE Transactions on Antennas and Propagation, 2016, 64(8): 3573–3586. doi: 10.1109/TAP.2016.2574880
    [22] 李英俊, 刘永祥, 田彪, 等. 基于IRLS的跳频模式下GTD散射参数提取和RCS重构[J/OL]. 系统工程与电子技术, http://kns.cnki.net/kcms/detail/11.2422.TN.20211027.1822.010.html, 2021.

    LI Yingjun, LIU Yongxiang, TIAN Biao, et al. GTD scattering parameter extraction and RCS reconstruction in frequency hopping mode based on IRLS[J/OL]. Systems Engineering and Electronics, http://kns.cnki.net/kcms/detail/11.2422.TN.20211027.1822.010.html, 2021.
  • 加载中
图(17)
计量
  • 文章访问数:  362
  • HTML全文浏览量:  232
  • PDF下载量:  73
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-06-23
  • 修回日期:  2022-11-14
  • 网络出版日期:  2022-11-16
  • 刊出日期:  2023-08-21

目录

    /

    返回文章
    返回