高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

机载双极化气象雷达多种降水粒子回波仿真方法研究

李海 冯开泓 杨文恒 金明

李海, 冯开泓, 杨文恒, 金明. 机载双极化气象雷达多种降水粒子回波仿真方法研究[J]. 电子与信息学报, 2023, 45(8): 2945-2954. doi: 10.11999/JEIT220830
引用本文: 李海, 冯开泓, 杨文恒, 金明. 机载双极化气象雷达多种降水粒子回波仿真方法研究[J]. 电子与信息学报, 2023, 45(8): 2945-2954. doi: 10.11999/JEIT220830
LI Hai, FENG Kaihong, YANG Wenheng, JIN Ming. Study on Simulation Method of Precipitation Particle Echo of Airborne Dual-Polarization Weather Radar[J]. Journal of Electronics & Information Technology, 2023, 45(8): 2945-2954. doi: 10.11999/JEIT220830
Citation: LI Hai, FENG Kaihong, YANG Wenheng, JIN Ming. Study on Simulation Method of Precipitation Particle Echo of Airborne Dual-Polarization Weather Radar[J]. Journal of Electronics & Information Technology, 2023, 45(8): 2945-2954. doi: 10.11999/JEIT220830

机载双极化气象雷达多种降水粒子回波仿真方法研究

doi: 10.11999/JEIT220830
基金项目: 国家重点研发计划(2021YFB1600600),民机项目(MJ-2018-S-28),天津市自然基金重点项目(20JCZDJC00490),天津市研究生科研创新项目(2021YJSS115),中国民航大学蓝天教学名师培养经费,浙江省杰出青年科学基金(LR21F010001),宁波市自然科学基金重点项目(202003N4013),国家自然科学基金(61871246)
详细信息
    作者简介:

    李海:男,教授,硕士生导师,博士,主要研究方向为机载气象雷达信号处理、分布式目标检测与参数估计、自适应信号处理、阵列信号处理、动目标检测与参数估计

    冯开泓:男,硕士生,主要研究方向为机载气象雷达信号处理

    杨文恒:男,硕士,主要研究方向为机载气象雷达信号处理

    金明:男,教授,博士生导师,主要研究方向为信号检测与参数估计、认知无线电频谱感知

    通讯作者:

    李海 elisha1976@163.com

  • 中图分类号: TN959.4

Study on Simulation Method of Precipitation Particle Echo of Airborne Dual-Polarization Weather Radar

Funds: The National Key Research and Development Program of China (2021YFB1600600), The Civil Aircraft Project (MJ-2018-S-28), The Key Projects of Tianjin Natural Foundation (20JCZDJC00490), Tianjin Graduate Scientific Research Innovation Project (2021YJSS115), The Training Foundations for Famous Blue Sky Teachers of Civil Aviation University of China, Zhejiang Science Foundation for Distinguished Young Scholars (LR21F010001), The Key Projects of Ningbo Natural Science Foundation (202003N4013), The National Natural Science Foundation of China (61871246)
  • 摘要: 该文提出一种机载双极化气象雷达多种降水粒子回波仿真方法。该方法基于T-Matrix方法以及天气预报模式(Weather Research and Forecasting, WRF),首先利用WRF建模仿真气象场景;其次考虑降水粒子为球形条件下,结合T-Matrix方法和微物理特性计算6种降水粒子反射率因子;最后应用雷达气象方程获得6种类型降水粒子回波信号,实现机载极化气象雷达降水粒子回波信号仿真。仿真结果表明,该方法的仿真结果可准确反映气象特征,与实测数据的对比分析进一步证实了所提方法的有效性、可靠性。
  • 图  1  基于WRF的机载极化气象雷达回波仿真原理框图

    图  2  基于WRF的气象场景仿真流程图

    图  3  WRF嵌套结构示意图

    图  4  基于WRF模式的气象场景仿真结果

    图  5  散射坐标系示意图

    图  6  仿真场景示意图

    图  7  回波仿真结果与地基雷达反射率因子对比图

    图  8  6种降水粒子反射率因子与差分反射率因子

    表  1  WRF模式的基本计算配置方案

    运算方式方案
    动力框架完全可压缩非静力平衡动力框架
    控制方程组通量形式
    水平方向Arakawa C网格
    垂直方向地形追随质量坐标系
    时间积分4阶的Runge-Kutta算法
    下载: 导出CSV

    表  2  各种降水粒子的物理特征

    降水种类密度(kg/m3)直径取值范围(m)离子积常数
    云滴1000(3×10–4, 1.5×10–3)0.93
    雨滴1000(5×10–4, 8.5×10–3)0.93
    冰晶500(5×10–4, 1.3×10–2)0.2
    雪晶100(3×10–4, 3×10–2)0.2
    400(3×10–4, 1.5×10–2)0.2
    冰雹900(5×10–3, 7×10–2)0.2
    下载: 导出CSV

    表  3  雷达仿真参数设置

    参数参数值参数参数值
    飞机高度(m)6000波束宽度(°)3.5
    工作频率(GHz)9.375PRF(Hz)800
    飞机速度(m/s)200采样脉冲数64
    距离分辨率(m)150脉冲宽度(µs)1
    扫描方式PPI扫描速度(°/s)45
    下载: 导出CSV
  • [1] 高涌荇, 王旭东, 汪玲, 等. 基于RCNN的双极化气象雷达天气信号检测[J]. 系统工程与电子技术, 2022, 44(11): 3380–3387. doi: 10.12305/j.issn.1001-506X.2022.11.12

    GAO Yongxing, WANG Xudong, WANG Ling, et al. Weather signal detection for dual polarization weather radar based on RCNN[J]. Systems Engineering and Electronics, 2022, 44(11): 3380–3387. doi: 10.12305/j.issn.1001-506X.2022.11.12
    [2] WOODELL D L, WEST J B, ELSALLAL W A, et al. Weather radar system and method using dual polarization antenna[P]. USA patent. 8098189, 2012.
    [3] WATERMAN P C. Matrix formulation of electromagnetic scattering[J]. Proceedings of the IEEE, 1965, 53(8): 805–812. doi: 10.1109/PROC.1965.4058
    [4] YEE K S. Numerical solution of initial boundary value problems involving Maxwell's equations in isotropic media[J]. IEEE Transactions on Antennas and Propagation, 1966, 14(3): 302–307. doi: 10.1109/TAP.1966.1138693
    [5] 杨利霞, 汪刘丰, 陈伟, 等. 目标电磁散射的面中心立方体网格FDTD方法[J]. 系统工程与电子技术, 2021, 43(10): 2718–2724. doi: 10.12305/j.issn.1001-506X.2021.10.03

    YANG Lixia, WANG Liufeng, CHEN Wei, et al. FDTD method of face-centered cube grid for electromagnetic scattering characteristics of object[J]. Systems Engineering and Electronics, 2021, 43(10): 2718–2724. doi: 10.12305/j.issn.1001-506X.2021.10.03
    [6] 许丽生, 陈洪滨, 丁继烈, 等. 非球形粒子光散射计算研究的进展综述[J]. 地球科学进展, 2014, 29(8): 903–912. doi: 10.11867/j.issn.1001-8166.2014.0903

    XU Lisheng, CHEN Hongbin, DING Jilie, et al. An overview of the advances in computational studies on light scattering by nonspherical particles[J]. Advances in Earth Science, 2014, 29(8): 903–912. doi: 10.11867/j.issn.1001-8166.2014.0903
    [7] MISHCHENKO M L, TRAVIS L D, and LACIS A A. Book Review: Scattering, Absorption, and Emission of Light by Small Particles[M]. Cambridge: Cambridge University Press, 2002.
    [8] AL-RIZZO H M and TRANQUILLA J M. Electromagnetic scattering from dielectrically coated axisymmetric objects using the generalized point-matching technique[J]. Journal of Computational Physics, 1995, 119(2): 342–355. doi: 10.1006/jcph.1995.1139
    [9] 王颖, 刘东. 非球形粒子光散射计算、测量及其应用[J]. 量子电子学报, 2020, 37(5): 601–614. doi: 10.3969/j.issn.1007-5461.2020.05.008

    WANG Ying and LIU Dong. Light scattering calculation and measurement of non-spherical particles and its application[J]. Chinese Journal of Quantum Electronics, 2020, 37(5): 601–614. doi: 10.3969/j.issn.1007-5461.2020.05.008
    [10] LI Zhengzheng, ZHANG Yan, ZHANG Guifu, et al. A microphysics-based simulator for advanced airborne weather radar development[J]. IEEE Transactions on Geoscience and Remote Sensing, 2011, 49(4): 1356–1373. doi: 10.1109/TGRS.2010.2076354
    [11] LUPIDI A, MOSCARDINI C, BERIZZI F, et al. Simulation of X-band polarimetric weather radar returns based on the weather research and forecast model[C]. Proceedings of 2011 IEEE RadarCon, Kansas City, USA, 2011: 734–739.
    [12] AUGROS C, TABARY P, CAUMONT O, et al. Development and validation of a full polarimetric radar simulator[C]. Proceedings of the 36th Conference on Radar Meteorology, Breckenridge, USA, 2013: 387.
    [13] 王洪, 万齐林, 尹金方, 等. 双线偏振雷达资料在数值模式中的应用: 模拟器的构建[J]. 气象学报, 2016, 74(2): 229–243. doi: 10.11676/qxxb2016.017

    WANG Hong, WAN Qilin, YIN Jinfang, et al. Application of the dual-polarization radar data in numerical modeling studies: Construction of the simulator[J]. Acta Meteorologica Sinica, 2016, 74(2): 229–243. doi: 10.11676/qxxb2016.017
    [14] 刘夏. 基于微物理特性的机载气象雷达极化数据仿真[D]. [硕士论文], 中国民航大学, 2016.

    LIU Xia. Microphysics-based polarization simulation for the airborne weather radar[D]. [Master dissertation], Civil Aviation University of China, 2016.
    [15] 刘夏, 韩雁飞, 李海, 等. 基于数值天气预报模式的机载气象雷达降雨目标极化特性仿真[J]. 雷达学报, 2016, 5(2): 190–199. doi: 10.12000/JR16048

    LIU Xia, HAN Yanfei, LI Hai, et al. Polarization characteristics simulation of airborne weather radar rainfall target based on numerical weather prediction[J]. Journal of Radars, 2016, 5(2): 190–199. doi: 10.12000/JR16048
    [16] LISCHI S, LUPIDI A, BERIZZI F, et al. X-band full polarized Doppler weather radar return simulation by using propagation-modified ensemble-averaged covariance matrix[C]. Proceedings of the 2013 14th International Radar Symposium, Dresden, Germany, 2013: 799–804.
    [17] LISCHI S, LUPIDI A, MARTORELLA M, et al. Advanced polarimetric Doppler weather radar simulator[C]. Proceedings of the 2014 15th International Radar Symposium, Gdansk, Poland, 2014: 1–6.
    [18] 王俐俐. WRF/HWRF模式云微物理参数化方案对热带气旋模拟的适用性评估[D]. [硕士论文], 东华大学, 2021.

    WANG Lili. Adaptability of cloud microphysical parameterization scheme to tropical cyclone simulation in the WRF/HWRF model[D]. [Master dissertation], Donghua University, 2021.
    [19] 王璐璐. 基于WRF模式的对流尺度边界层方案随机参数扰动方法研究[D]. [硕士论文], 南京信息工程大学, 2020.

    WANG Lulu. Research on stochastic perturbed planetary boundary layer scheme parameters at convective scale based on the WRF model[D]. [Master dissertation], Nanjing University of Information Science & Technology, 2020.
    [20] 张茜, 段克勤. 基于WRF模拟的2017年帕米尔高原降水特征分析[J]. 干旱区地理, 2021, 44(6): 1707–1716. doi: 10.12118/j.issn.1000-6060.2021.06.19

    ZHANG Qian and DUAN Keqin. Characteristics of precipitation in the Pamirs in 2017 based on WRF simulation[J]. Arid Land Geography, 2021, 44(6): 1707–1716. doi: 10.12118/j.issn.1000-6060.2021.06.19
    [21] 姜宇轩. 电大尺寸目标电磁散射的高频方法研究[D]. [硕士论文], 西安电子科技大学, 2020.

    JIANG Yuxuan. Study on high frequency methods of electromagnetic scattering from large size targets[D]. [Master dissertation], Xidian University, 2020.
    [22] 陈浩. 非球形气象目标多次散射特性的理论与实验研究[D]. [硕士论文], 南京信息工程大学, 2019.

    CHEN Hao. Theoretical and experimental study on the multiple scattering characteristics of non-spherical meteorological targets[D]. [Master dissertation], Nanjing University of Information Science & Technology, 2019.
    [23] MUGNAI A and WISCOMBE W J. Scattering from nonspherical Chebyshev particles. I: Cross sections, single-scattering albedo, asymmetry factor, and backscattered fraction[J]. Applied Optics, 1986, 25(7): 1235–1244. doi: 10.1364/ao.25.001235
    [24] MISHCHENKO M I and TRAVIS L D. Light scattering by polydispersions of randomly oriented spheroids with sizes comparable to wavelengths of observation[J]. Applied Optics, 1994, 33(30): 7206–7225. doi: 10.1364/ao.33.007206
    [25] BRINGI V N and CHANDRASEKAR V. Polarimetric Doppler Weather Radar: Principles and Applications[M]. Cambridge: Cambridge University Press, 2001: 161–210.
  • 加载中
图(8) / 表(3)
计量
  • 文章访问数:  245
  • HTML全文浏览量:  206
  • PDF下载量:  48
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-06-23
  • 修回日期:  2022-08-04
  • 网络出版日期:  2023-04-14
  • 刊出日期:  2023-08-21

目录

    /

    返回文章
    返回