高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于奇异值分解的低轨星载双基调频连续波SAR成像方法

别博文 刘江 孙光才 王迪 邢孟道

别博文, 刘江, 孙光才, 王迪, 邢孟道. 基于奇异值分解的低轨星载双基调频连续波SAR成像方法[J]. 电子与信息学报, 2023, 45(7): 2502-2510. doi: 10.11999/JEIT220757
引用本文: 别博文, 刘江, 孙光才, 王迪, 邢孟道. 基于奇异值分解的低轨星载双基调频连续波SAR成像方法[J]. 电子与信息学报, 2023, 45(7): 2502-2510. doi: 10.11999/JEIT220757
BIE Bowen, LIU Jiang, SUN Guangcai, WANG Di, XING Mengdao. Low-orbit Bistatic Frequency Modulated Continuous Wave SAR Imaging Method Based on Singular Value Decomposition[J]. Journal of Electronics & Information Technology, 2023, 45(7): 2502-2510. doi: 10.11999/JEIT220757
Citation: BIE Bowen, LIU Jiang, SUN Guangcai, WANG Di, XING Mengdao. Low-orbit Bistatic Frequency Modulated Continuous Wave SAR Imaging Method Based on Singular Value Decomposition[J]. Journal of Electronics & Information Technology, 2023, 45(7): 2502-2510. doi: 10.11999/JEIT220757

基于奇异值分解的低轨星载双基调频连续波SAR成像方法

doi: 10.11999/JEIT220757
基金项目: 国家自然科学基金青年项目(62001353)
详细信息
    作者简介:

    别博文:男,讲师,研究方向为合成孔径雷达成像

    刘江:男,硕士生,研究方向为星载双基合成孔径雷达成像

    孙光才:男,教授,研究方向为新体制雷达成像、运动目标检测

    王迪:男,副教授,研究方向为激光雷达遥感、点云智能处理

    邢孟道:男,教授,研究方向为雷达探测、雷达成像、运动目标检测成像

    通讯作者:

    刘江 liujiang_0522@163.com

  • 中图分类号: TN957

Low-orbit Bistatic Frequency Modulated Continuous Wave SAR Imaging Method Based on Singular Value Decomposition

Funds: The National Natural Science Foundation Youth Project of China (62001353)
  • 摘要: 该文基于调频连续波(FMCW)信号对低轨星载双基合成孔径雷达(SAR)的成像方法进行研究。星载双基模型具有收发异置、结构灵活的特点,其非线性运动轨迹和双斜距不利于信号频谱的推导和分析。通过引入一个4阶多项式斜距模型对回波信号进行建模,接着用级数反演法得到信号两维频谱的表达式。详细分析高阶多项式系数的空变影响。对距离徙动项进行频域处理,对方位相位采用奇异值分解(SVD)的方法,将方位空变项与多普勒分离开,并引入非线性方位变标函数,通过两次连续的插值和重采样完成方位聚焦。仿真结果证明了该算法的有效性。
  • 图  1  星载双基FMCW SAR成像几何模型

    图  2  距离维处理流程图

    图  3  SVD处理后信号相位误差

    图  4  方位维处理的时频分布图及流程图

    图  5  点目标几何分布

    图  6  点目标PT4, PT5和PT6距离维处理结果

    图  7  第1次SVD处理后的点目标PT4, PT5和PT6方位向采样点结果

    图  8  第2次SVD处理后的点目标PT4,PT5和PT6方位向采样点结果

    图  9  本文方法和文献[21]对点目标PT1成像结果对比图

    图  10  场景仿真结果

    表  1  星载轨道及雷达仿真参数

    参数名称参数值参数名称参数值
    轨道高度500 km载频35.75 GHz
    离心率0.05信号带宽150 MHz
    下视角31.5°脉冲重复频率4000 Hz
    占空比85 %采样率25 MHz
    双星间距10~12 km合成孔径时间0.5 s
    场景宽度5 km×5 km地距分辨率1.7 m×2.5 m
    下载: 导出CSV

    表  2  点目标聚焦性能评估(dB)

    目标点PSLRISLR
    距离方位距离方位
    PT1–13.0384–13.3730–9.5939–10.2401
    PT4–13.1874–13.3809–9.5523–10.4050
    PT5–13.1452–12.8488–9.5117–9.9738
    PT6–13.1879–13.3270–9.5602–10.4058
    下载: 导出CSV
  • [1] 保铮, 邢孟道, 王彤. 雷达成像技术[M]. 北京: 电子工业出版社, 2005: 123–182.

    BAO Zheng, XING Mengdao, and WANG Tong. Radar Image Technology[M]. Beijing: Publishing House of Electronics Industry, 2005: 123–182.
    [2] LOFFELD O, NIES H, PETERS V, et al. Models and useful relations for bistatic SAR processing[J]. IEEE Transactions on Geoscience and Remote Sensing, 2004, 42(10): 2031–2038. doi: 10.1109/TGRS.2004.835295
    [3] NEO Y L, WONG F H, and CUMMING I G. Processing of azimuth-invariant bistatic SAR data using the range Doppler algorithm[J]. IEEE Transactions on Geoscience and Remote Sensing, 2008, 46(1): 14–21. doi: 10.1109/TGRS.2007.909090
    [4] LIU Wenkang, SUN Guangcai, XING Mengdao, et al. Focusing of MEO SAR data based on principle of optimal imaging coordinate system[J]. IEEE Transactions on Geoscience and Remote Sensing, 2020, 58(8): 5477–5489. doi: 10.1109/TGRS.2020.2966581
    [5] LIU Wenkang, SUN Guangcai, XING Mengdao, et al. 2-D beam steering method for squinted high-orbit SAR imaging[J]. IEEE Transactions on Geoscience and Remote Sensing, 2021, 59(6): 4827–4840. doi: 10.1109/TGRS.2020.3015904
    [6] ZHANG Yixin and FANG Lili. Imaging for bistatic airborne frequency modulated continuous wave SAR[C]. 2019 International Conference on Electronic Engineering and Informatics, Nanjing, China, 2019: 155–158.
    [7] BIE Bowen, QUAN Yinghui, LIU Wenkang, et al. A modified range model and doppler resampling based imaging algorithm for high squint SAR on maneuvering platforms[J]. IEEE Geoscience and Remote Sensing Letters, 2020, 17(11): 1923–1927. doi: 10.1109/LGRS.2019.2959660
    [8] 李根, 马彦恒, 侯建强, 等. 基于Keystone变换和扰动重采样的机动平台大斜视SAR成像方法[J]. 电子与信息学报, 2020, 42(10): 2485–2492. doi: 10.11999/JEIT190831

    LI Gen, MA Yanheng, HOU Jianqiang, et al. Maneuvering platform high-squint SAR imaging method based on keystone transform and perturbation resampling[J]. Journal of Electronics &Information Technology, 2020, 42(10): 2485–2492. doi: 10.11999/JEIT190831
    [9] CHEN Jianlai, SUN Guangcai, WANG Yong, et al. A TSVD-NCS algorithm in range-doppler domain for geosynchronous synthetic aperture radar[J]. IEEE Geoscience and Remote Sensing Letters, 2016, 13(11): 1631–1635. doi: 10.1109/LGRS.2016.2599224
    [10] LIU Yue, DENG Yunkai, WANG R, et al. Bistatic FMCW SAR signal model and imaging approach[J]. IEEE Transactions on Aerospace and Electronic Systems, 2013, 49(3): 2017–2028. doi: 10.1109/TAES.2013.6558035
    [11] 梁毅, 王虹现, 邢孟道, 等. 基于FMCW的大斜视SAR成像研究[J]. 电子与信息学报, 2009, 31(4): 776–780. doi: 10.3724/SP.J.1146.2007.01851

    LIANG Yi, WANG Hongxian, XING Mengdao, et al. Imaging study of high squint SAR based on FMCW[J]. Journal of Electronics &Information Technology, 2009, 31(4): 776–780. doi: 10.3724/SP.J.1146.2007.01851
    [12] NEO Y L, WONG F, and CUMMING I G. A two-dimensional spectrum for bistatic SAR processing using series reversion[J]. IEEE Geoscience and Remote Sensing Letters, 2007, 4(1): 93–96. doi: 10.1109/LGRS.2006.885862
    [13] 王开民. 调频连续波无人机SAR动目标成像研究[D]. [硕士论文], 电子科技大学, 2020.

    WANG Kaimin. Research on moving target imaging of FMCW SAR mounted on unmanned aerial vehicle[D]. [Master dissertation], University of Electronic Science and Technology, 2020.
    [14] BIE Bowen, QUAN Yinghui, XU Kaijie, et al. High-speed maneuvering platform SAR imaging with optimal beam steering control[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 5216012. doi: 10.1109/TGRS.2021.3121427
    [15] 游冬, 孙光才, 李亚超, 等. 地球同步轨道SAR两维奇异值分解成像方法[J]. 系统工程与电子技术, 2018, 40(10): 2200–2206. doi: 10.3969/j.issn.1001-506X.2018.10.07

    YOU Dong, SUN Guangcai, LI Yachao, et al. Two-dimension SVD imaging method for GEO SAR[J]. Systems Engineering and Electronics, 2018, 40(10): 2200–2206. doi: 10.3969/j.issn.1001-506X.2018.10.07
    [16] TANG Wanru, HUANG Bang, ZHANG Shunsheng, et al. Focusing of spaceborne SAR data using the improved nonlinear chirp scaling algorithm[C]. 2020 IEEE International Geoscience and Remote Sensing Symposium, Waikoloa, USA, 2020: 6555–6558.
    [17] SUN Guangcai, CHEN Jianlai, YANG Jun, et al. A 2-D space-variant chirp scaling algorithm for GEO SAR[C]. The 10th European Conference on Synthetic Aperture Radar, Berlin, Germany, 2014: 1–4.
    [18] XIONG Yi, LIANG Buge, YU Hanwen, et al. Processing of bistatic SAR data with nonlinear trajectory using a controlled-SVD algorithm[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2021, 14: 5750–5759. doi: 10.1109/JSTARS.2021.3084619
    [19] SUN Guangcai, XING Mengdao, WANG Yong, et al. A 2-D space-variant chirp scaling algorithm based on the RCM equalization and subband synthesis to process geosynchronous SAR data[J]. IEEE Transactions on Geoscience and Remote Sensing, 2014, 52(8): 4868–4880. doi: 10.1109/TGRS.2013.2285721
    [20] FENG Lipeng, WANG Hui, ZHENG Shichao, et al. Spaceborne bistatic FMCW SAR imaging method based on FS algorithm[C]. The 2021 2nd China International SAR Symposium, Shanghai, China, 2021: 1–5.
    [21] MEI Haiwen, LI Yachao, XING Mengdao, et al. A frequency-domain imaging algorithm for translational variant bistatic forward-looking SAR[J]. IEEE Transactions on Geoscience and Remote Sensing, 2020, 58(3): 1502–1515. doi: 10.1109/TGRS.2019.2943743
  • 加载中
图(10) / 表(2)
计量
  • 文章访问数:  325
  • HTML全文浏览量:  154
  • PDF下载量:  70
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-06-13
  • 修回日期:  2022-10-20
  • 网络出版日期:  2022-10-25
  • 刊出日期:  2023-07-10

目录

    /

    返回文章
    返回