高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

应用于异常事件检测的深度交替方向乘子法网络

胡世成 杨柳 康凯 钱骅

胡世成, 杨柳, 康凯, 钱骅. 应用于异常事件检测的深度交替方向乘子法网络[J]. 电子与信息学报, 2023, 45(7): 2634-2641. doi: 10.11999/JEIT220744
引用本文: 胡世成, 杨柳, 康凯, 钱骅. 应用于异常事件检测的深度交替方向乘子法网络[J]. 电子与信息学报, 2023, 45(7): 2634-2641. doi: 10.11999/JEIT220744
HU Shicheng, YANG Liu, KANG Kai, QIAN Hua. Deep Alternating Direction Multiplier Method Network for Event Detection[J]. Journal of Electronics & Information Technology, 2023, 45(7): 2634-2641. doi: 10.11999/JEIT220744
Citation: HU Shicheng, YANG Liu, KANG Kai, QIAN Hua. Deep Alternating Direction Multiplier Method Network for Event Detection[J]. Journal of Electronics & Information Technology, 2023, 45(7): 2634-2641. doi: 10.11999/JEIT220744

应用于异常事件检测的深度交替方向乘子法网络

doi: 10.11999/JEIT220744
基金项目: 国家自然科学基金(61971286),国家重点研究发展计划(2020YFB2205603),上海市科学技术委员会科技创新行动计划(19DZ1204300)
详细信息
    作者简介:

    胡世成:男,博士生,研究方向为大数据信号处理

    杨柳:男,博士,研究方向为无线传感器网络、分布式信号处理

    康凯:男,研究员,研究方向为无线通信、通信系统设计、物联网技术

    钱骅:男,研究员,研究方向为无线通信、非线性信号处理、大数据信号处理

    通讯作者:

    钱骅 qianh@sari.ac.cn

  • 中图分类号: TN919.2

Deep Alternating Direction Multiplier Method Network for Event Detection

Funds: The National Natural Science Foundation of China (61971286), The National Key Research and Development Program of China (2020YFB2205603), The Science and Technology Commission Foundation of Shanghai (19DZ1204300)
  • 摘要: 针对大规模无线传感器网络(WSN)中的事件检测问题(EDP),传统的方法通常依赖先验信息,阻碍了实际应用。该文为 EDP 提出了一种基于深度学习的算法,称为交替方向乘子法网络(ADMM-Net)。首先,采用低秩稀疏矩阵分解来建模事件的时空相关性。之后,EDP 被表述为一个带约束的优化问题并用交替方向乘子法(ADMM)求解。然而,优化算法收敛慢且算法的性能依赖于对先验参数的仔细选择。该文基于深度学习中“展开”的概念,提出了一种用于EDP的深度神经网络ADMM-Net。通过“展开”ADMM算法的方式得到。 ADMM-Net 具有固定层数,其参数可以通过监督学习训练获得。无需先验信息。相比于传统算法,提出的 ADMM-Net 收敛快且不需先验信息。人造数据集和真实数据集的仿真结果验证了ADMM-Net 的有效性。
  • 图  1  WSN中的数据收集模型

    图  2  $ K $层ADMM-Net的数据流图

    图  3  定义WSN中的扩散事件和移动事件

    图  4  真实数据集和人造数据集下的事件检测性能

    图  5  ADMM和ADMM-Net事件检测收敛性能

    图  6  训练集大小对ADMM-Net事件检测性能的影响

    图  7  给定WSN区域大小,在不同传感器数目时的事件检测性能

    算法1 ADMM-Net事件检测算法
     已知:数据矩阵D,深度神经网络层数K,和初始化随机生成参
     数:${\boldsymbol{\varTheta } } = \{ {\eta _k},{\zeta _k},{\gamma _k},{\varphi _k},{\phi _k},{\xi _k}\} ,k = 1,2, \cdots ,K.$
     (1) 初始化 ${ {\boldsymbol{A} }_0} = { {\boldsymbol{B} }_0} = { {\boldsymbol{E} }_0} = {{\boldsymbol{\varLambda}} _0} = { { {\textit{0} } } }$为全0矩阵,$k = 0$
     (2) 正向传播:
     (3) for 数据集中的每个样本 do
     (4)   While $ k < K $ do
     (5)    $ {{\boldsymbol{P}}_k} = {{\boldsymbol{B}}_k} - {\eta _k}{\Lambda _{k - 1}} $
     (6)    $ {{\boldsymbol{A}}_k} = {\text{SVT}}\left( {{{\boldsymbol{P}}_k},{\zeta _k}} \right) $
     (7)    ${ {\boldsymbol{Q} }_k} = {\boldsymbol{D} } - { {\boldsymbol{A} }_k} + {\gamma _k}{{\boldsymbol{\varLambda}} _{k - 1} }$
     (8)    $ {{\boldsymbol{E}}_k} = {\text{ST}}\left( {{{\boldsymbol{Q}}_k},{\varphi _k}} \right) $
     (9)    $ {{\boldsymbol{B}}_k} = {\phi _k}\left( {{\boldsymbol{D}} - {{\boldsymbol{E}}_k}} \right) + (1 - {\phi _k}){{\boldsymbol{Q}}_k} $
     (10)   ${{\boldsymbol{\varLambda}} _k} = {{\boldsymbol{\varLambda}} _{k - 1} } + {\xi _k}\left( { { {\boldsymbol{A} }_k} - { {\boldsymbol{B} }_k} } \right)$
     (11)   $ k = k + 1 $
     (12)  end while
     (13)  输出${{\boldsymbol{A}}_K}$和${{\boldsymbol{E}}_K}$,并计算归一化均方误差
     (14)  反向传播:
     (15)  for 隐藏层或输出层的每个神经元 do
     (16)   更新网络中的每一个权值和偏差
     (17)  end for
     (18) end for
    下载: 导出CSV
  • [1] STOYANOVA M, NIKOLOUDAKIS Y, PANAGIOTAKIS S, et al. A survey on the internet of things (IoT) forensics: Challenges, approaches, and open issues[J]. IEEE Communications Surveys & Tutorials, 2020, 22(2): 1191–1221. doi: 10.1109/COMST.2019.2962586
    [2] JAVADI S H. Detection over sensor networks: A tutorial[J]. IEEE Aerospace and Electronic Systems Magazine, 2016, 31(3): 2–18. doi: 10.1109/MAES.2016.140128
    [3] ARAD J, HOUSH M, PERELMAN L, et al. A dynamic thresholds scheme for contaminant event detection in water distribution systems[J]. Water Research, 2013, 47(5): 1899–1908. doi: 10.1016/j.watres.2013.01.017
    [4] LIU Li, HAN Guangjie, HE Yu, et al. Fault-tolerant event region detection on trajectory pattern extraction for industrial wireless sensor networks[J]. IEEE Transactions on Industrial Informatics, 2020, 16(3): 2072–2080. doi: 10.1109/TII.2019.2933238
    [5] YU Manzhu, BAMBACUS M, CERVONE G, et al. Spatiotemporal event detection: A review[J]. International Journal of Digital Earth, 2020, 13(12): 1339–1365. doi: 10.1080/17538947.2020.1738569
    [6] YIN Jie, HU D H, and YANG Qiang. Spatio-temporal event detection using dynamic conditional random fields[C]. The 21st International Joint Conference on Artificial Intelligence, Pasadena, USA, 2009: 1321–1326.
    [7] GRANJON P. The CuSum algorithm-a small review[EB/OL].https://hal.archives-ouvertes.fr/hal-00914697, 2013.
    [8] KRISHNAMACHARIB and IYENGAR S. Distributed Bayesian algorithms for fault-tolerant event region detection in wireless sensor networks[J]. IEEE Transactions on Computers, 2004, 53(3): 241–250. doi: 10.1109/TC.2004.1261832
    [9] CHEN Xianda, KIM K T, and YOUN H Y. Integration of Markov random field with Markov chain for efficient event detection using wireless sensor network[J]. Computer Networks, 2016, 108: 108–119. doi: 10.1016/j.comnet.2016.07.004
    [10] WU Tao and CHENG Qi. Online dynamic event region detection using distributed sensor networks[J]. IEEE Transactions on Aerospace and Electronic Systems, 2014, 50(1): 393–405. doi: 10.1109/TAES.2013.120308
    [11] WANG T Y, YANG M H, and WU J Y. Distributed detection of dynamic event regions in sensor networks with a Gibbs field distribution and Gaussian corrupted measurements[J]. IEEE Transactions on Communications, 2016, 64(9): 3932–3945. doi: 10.1109/TCOMM.2016.2593467
    [12] WANG Jiejie and LIU Bin. Online fault-tolerant dynamic event region detection in sensor networks via trust model[C]. 2017 IEEE Wireless Communications and Networking Conference (WCNC), San Francisco, USA, 2017: 1–6.
    [13] CANDÈS E J, LI Xiaodong, MA Yi, et al. Robust principal component analysis?[J]. Journal of the ACM, 2011, 58(3): 11. doi: 10.1145/1970392.1970395
    [14] GAO Lianru, HONG Danfeng, YAO Jing, et al. Spectral superresolution of multispectral imagery with joint sparse and low-rank learning[J]. IEEE Transactions on Geoscience and Remote Sensing, 2021, 59(3): 2269–2280. doi: 10.1109/TGRS.2020.3000684
    [15] MONGA V, LI Yuelong, and ELDAR Y C. Algorithm unrolling: Interpretable, efficient deep learning for signal and image processing[J]. IEEE Signal Processing Magazine, 2021, 38(2): 18–44. doi: 10.1109/MSP.2020.3016905
    [16] JOHNSTON J, LI Yinchuan, LOPS M, et al. ADMM-Net for communication interference removal in stepped-frequency radar[J]. IEEE Transactions on Signal Processing, 2021, 69: 2818–2832. doi: 10.1109/TSP.2021.3076900
    [17] YANG Liu, WANG Haifeng, and QIAN Hua. An ADMM-ResNet for data recovery in wireless sensor networks with guaranteed convergence[J]. Digital Signal Processing, 2021, 111: 102956. doi: 10.1016/j.dsp.2020.102956
    [18] AYBAT N S and IYENGAR G. An alternating direction method with increasing penalty for stable principal component pursuit[J]. Computational Optimization and Applications, 2015, 61(3): 635–668. doi: 10.1007/s10589-015-9736-6
    [19] Intel Berkeley Research Lab. Intel lab data[EB/OL]. http://db.lcs.mit.edu/labdata/labdata.html, 2019.
  • 加载中
图(7) / 表(1)
计量
  • 文章访问数:  335
  • HTML全文浏览量:  291
  • PDF下载量:  72
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-06-07
  • 修回日期:  2022-10-05
  • 网络出版日期:  2022-10-11
  • 刊出日期:  2023-07-10

目录

    /

    返回文章
    返回