高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于混合整数线性规划的MORUS初始化阶段的差分分析

刘帅 关杰 胡斌 马宿东

刘帅, 关杰, 胡斌, 马宿东. 基于混合整数线性规划的MORUS初始化阶段的差分分析[J]. 电子与信息学报, 2023, 45(7): 2537-2545. doi: 10.11999/JEIT220735
引用本文: 刘帅, 关杰, 胡斌, 马宿东. 基于混合整数线性规划的MORUS初始化阶段的差分分析[J]. 电子与信息学报, 2023, 45(7): 2537-2545. doi: 10.11999/JEIT220735
LIU Shuai, GUAN Jie, HU Bin, MA Sudong. Differential Analysis of the Initialization of MORUS Based on Mixed-Integer Linear Programming[J]. Journal of Electronics & Information Technology, 2023, 45(7): 2537-2545. doi: 10.11999/JEIT220735
Citation: LIU Shuai, GUAN Jie, HU Bin, MA Sudong. Differential Analysis of the Initialization of MORUS Based on Mixed-Integer Linear Programming[J]. Journal of Electronics & Information Technology, 2023, 45(7): 2537-2545. doi: 10.11999/JEIT220735

基于混合整数线性规划的MORUS初始化阶段的差分分析

doi: 10.11999/JEIT220735
基金项目: 国家自然科学基金(61802437, 62102448)
详细信息
    作者简介:

    刘帅:男,博士生,研究方向为对称密码的设计与分析

    关杰:女,教授,研究方向为密码设计与分析

    胡斌:男,教授,研究方向为密码学与信息安全

    马宿东:男,博士生,研究方向为对称密码的设计与分析

    通讯作者:

    刘帅 sssshuai1993@163.com

  • 中图分类号: TN918.1

Differential Analysis of the Initialization of MORUS Based on Mixed-Integer Linear Programming

Funds: The National Natural Science Foundation of China (61802437, 62102448)
  • 摘要: 认证加密算法 MORUS是凯撒 (CAESAR)竞赛的优胜算法,抗差分分析性能是衡量认证加密算法安全性的重要指标之一。该文研究了MORUS算法初始化阶段的差分性质,首先给出了一个差分推导规则,可以快速获得一条概率较大的差分链。在此基础上利用混合整数线性规划(MILP)自动搜索技术求解更优的差分链。为了提高搜索速度,结合MORUS初始化阶段的结构特点给出了分而治之策略。根据$ \Delta {\text{IV}} $的重量、取值将MILP模型划分为多个子模型并证明了部分子模型的等价性,大大缩减了模型的求解时间,得到了MORUS初始化阶段1~6步状态更新的最优差分链。最后给出了简化版MORUS的差分-区分攻击,该文的结果较之前的工作有较大的提升。
  • 图  1  MORUS的状态更新函数

    图  2  简化版MORUS示意图

    表  1  MORUS的参数设置(bit)

    参数MORUS-640-128MORUS-1280-128MORUS-1280-256
    密钥长度128128256
    IV长度128128128
    状态大小64012801280
    认证码长度128128128
    下载: 导出CSV

    表  2  符号说明

    符号说明
    $ \oplus $逐比特异或;
    $ \& $逐比特与;
    <<<循环左移;
    $ {0^l} $$ l $ bit 0;
    $ {1^l} $$ l $ bit 1;
    $ {\text{cons}}{{\text{t}}_{\text{0}}} $$ 00||01||01||02||03||05||08||0d||15||22||37||59||90||e9||79||62 $;
    $ {\text{cons}}{{\text{t}}_{\text{1}}} $$ db||3d||18||55||6d||c2||2f||f1||20||11||31||42||73||b5||28||dd $;
    $ {S^i} $第$ i $步输入状态;
    $ {S^{i,j}} $第$ i $步第$ j $轮输入状态;
    $ S_k^{i,j} $$ {S^{i,j}} $第$ k $个bit块,对于MORUS-640,每个状态包含5个128 bit块,对于MORUS-1280,每个状态包含5个256 bit块;
    $ S_{k,l}^{i,j} $$ S_k^{i,j} $的第$ l $ bit。
    下载: 导出CSV

    表  3  循环常数

    MORUS-640MORUS-1280MORUS-640MORUS-1280
    $ {b_0} $513$ {w_0} $3264
    $ {b_1} $3146$ {w_1} $64128
    $ {b_2} $738$ {w_2} $96192
    $ {b_3} $227$ {w_3} $64128
    $ {b_4} $134$ {w_4} $3264
    下载: 导出CSV

    表  4  MORUS初始化阶段差分转移概率

    状态更新步数1234567
    MORUS-640$ {2^{ - 1}} $$ {2^{ - 8}} $$ {2^{ - 29}} $$ {2^{ - 82}} $$ {2^{ - 180}} $$ {2^{ - 301}} $$ {2^{ - 453}} $
    MORUS-1280$ {2^{ - 1}} $$ {2^{ - 8}} $$ {2^{ - 29}} $$ {2^{ - 86}} $$ {2^{ - 201}} $$ {2^{ - 399}} $$ {2^{ - 681}} $
    下载: 导出CSV

    表  5  MORUS初始化阶段的初始状态差分$ \Delta {S^{0,0}} $

    MORUS-640MORUS-1280
    $ \Delta S_0^{0,0} $${{\Delta {\rm{IV}}} }$${{\Delta {\rm{IV}}} }||{0^{128} }$
    $ \Delta S_1^{0,0} $$ {0^{128}} $$ {0^{256}} $
    $ \Delta S_2^{0,0} $$ {0^{128}} $$ {0^{256}} $
    $ \Delta S_3^{0,0} $$ {0^{128}} $$ {0^{256}} $
    $ \Delta S_4^{0,0} $$ {0^{128}} $$ {0^{256}} $
    下载: 导出CSV

    表  6  MORUS初始化阶段第5轮状态更新的输入差分$ \Delta {S^{0,4}} $

    MORUS-640MORUS-1280
    $ \Delta S_0^{0,4} $${\text{Rot\_128\_32(} }\Delta {\rm{IV}},{b_0}) < << {w_2}$${\text{Rot\_256\_64(} }\Delta {\rm{IV}}||{0^{128} },{b_0}) < << {w_2}$
    $ \Delta S_1^{0,4} $$ {0^{128}} $$ {0^{256}} $
    $ \Delta S_2^{0,4} $${\text{Rot\_128\_32(} }\Delta {\rm{IV}},{b_0} + {b_2})$${\text{Rot\_256\_64(} }\Delta {\rm{IV}}||{0^{128} },{b_0} + {b_2})$
    $ \Delta S_3^{0,4} $$ {\text{Rot\_128\_32}}(\Delta S_0^{0,4}\& (S_4^{0,0} < < < {w_1}),{b_3}) $$ {\text{Rot\_256\_64}}(\Delta S_0^{0,4}\& (S_4^{0,0} < < < {w_1}),{b_3}) $
    $ \Delta S_4^{0,4} $$ {0^{128}} $$ {0^{256}} $
    下载: 导出CSV

    表  7  MORUS子轮函数两种刻画方式的比较

    刻画方式(2)+(3)(4)
    变量个数$ 3Rn $$ Rn $
    不等式个数$ 2Rn $$ 4Rn $
    下载: 导出CSV

    表  8  ${\varOmega _1}$, ${\varOmega _2}$的分类个数

    MORUS-640MORUS-1280
    ${\varOmega _1}$22
    ${\varOmega _2}$257382
    下载: 导出CSV
     算法1 基于MILP分而治之策略搜索MORUS初始化阶段差分链
     输入:$ R $
     输出:$ {\text{Sol}}({\mathcal{M}_R}) $
     步骤1 根据第3节的差分推导规则,计算$ {\text{U}}{{\text{B}}_R} $的初始值,令
         $ i = 0 $;
     步骤2 令$ i = i + 1 $;
     步骤3 计算$ {\text{LB}}(\mathcal{M}\left( i \right)) $,如果${\text{LB} }(\mathcal{M}\left( i \right)) \ge {\text{U} }{ {\text{B} }_R}$,返回步骤2,
         否则,执行步骤4;
     步骤4 求解$ {\text{Sol}}(\mathcal{M}\left( i \right)) $,如果$ {\text{Sol}}(\mathcal{M}\left( i \right)) < {\text{U}}{{\text{B}}_R} $,令
         $ {\text{U}}{{\text{B}}_R} = {\text{Sol}}(\mathcal{M}\left( i \right)) $;
     步骤5 如果$ i = |{\text{Set}}| $,输出$ {\text{U}}{{\text{B}}_R} $,否则,返回步骤2。
    下载: 导出CSV

    表  9  MILP模型中MORUS初始化阶段的最优差分转移概率

    状态更新步数
    123456
    MORUS-640$ {2^{ - 1}} $$ {2^{ - 8}} $$ {2^{ - 29}} $$ {2^{ - 82}} $$ {2^{ - 179}} $$ {2^{ - 279}} $
    MORUS-1280$ {2^{ - 1}} $$ {2^{ - 8}} $$ {2^{ - 29}} $$ {2^{ - 86}} $$ {2^{{\text{ - 201}}}} $$ {2^{ - 379}} $
    下载: 导出CSV

    表  10  简化版MORUS差分-区分攻击的差分转移概率

    状态更新步数MORUS-640MORUS-1280
    文献[16]本文文献[16]本文
    3$ {2^{ - 38}} $$ {2^{ - 32}} $$ {2^{ - 32}} $
    4$ {2^{ - 101}} $$ {2^{ - 89}} $$ {2^{ - 91}} $
    5$ {2^{ - 184}} $$ {2^{ - 207}} $
    6$ {2^{ - 284}} $$ {2^{ - 380}} $
    下载: 导出CSV

    表  11  简化版MORUS的差分-区分攻击

    算法状态更新步数差分转移概率数据量区分优势
    MORUS-6403$ {2^{ - 32}} $$ {2^{35}} $0.999665
    4$ {2^{ - 89}} $$ {2^{92}} $0.999665
    MORUS-12804$ {2^{ - 91}} $$ {2^{94}} $0.999665
    5$ {2^{ - 207}} $$ {2^{210}} $0.999665
    下载: 导出CSV
  • [1] BELLARE M and NAMPREMPRE C. Authenticated encryption: Relations among notions and analysis of the generic composition paradigm[J]. Journal of Cryptology, 2008, 21(4): 469–491. doi: 10.1007/s00145-008-9026-x
    [2] BERNSTEIN DJ. CAESAR call for submissions[EB/OL]. http://competitions:cr:yp:to/caesar-call.html, 2014.
    [3] LAWRENCE B. Submission requirements and evaluation criteria for the lightweight cryptography standardization process[EB/OL].https://csrc.nist.gov/projects/lightweight-cryptography, 2018.
    [4] SAHA D, SADAKI Y, SHI Danping, et al. On the security margin of TinyJAMBU with refined differential and linear cryptanalysis[J]. IACR Transactions on Symmetric Cryptology, 2020, 2020(3): 152–174. doi: 10.13154/tosc.v2020.i3.152-174
    [5] SONG Ling, TU Yi, SHI Danping, et al. Security analysis of Subterranean 2.0[J]. Designs, Codes and Cryptography, 2021, 89(8): 1875–1905. doi: 10.1007/s10623-021-00892-6
    [6] ZHOU Haibo, LI Zheng, DONG Xiaoyang, et al. Practical key-recovery attacks on round-reduced Ketje Jr, Xoodoo-AE and Xoodyak[J]. The Computer Journal, 2020, 63(8): 1231–1246. doi: 10.1093/comjnl/bxz152
    [7] LIU Shuai, GUAN Jie, and HU Bin. Fault attacks on authenticated encryption modes for GIFT[J]. IET Information Security, 2022, 16(1): 51–63. doi: 10.1049/ise2.12041
    [8] MATSUI M. On correlation between the order of S-boxes and the strength of DES[C]. The Workshop on the Theory and Application of of Cryptographic Techniques, Perugia, Italy, 1995: 366–375.
    [9] 叶涛, 韦永壮, 李灵琛. ACE密码算法的积分分析[J]. 电子与信息学报, 2021, 43(4): 908–914. doi: 10.11999/JEIT200234

    YE Tao, WEI Yongzhuang, and LI Lingchen. Integral cryptanalysis of ACE encryption algorithm[J]. Journal of Electronics &Information Technology, 2021, 43(4): 908–914. doi: 10.11999/JEIT200234
    [10] SHI Danping, SUN Siwen, DERBEZ P, et al. Programming the Demirci-Selcuk meet-in-the-middle attack with constraints[C]. The 24th International Conference on the Theory and Application of Cryptology and Information Security, Brisbane, Australia, 2018: 3–34.
    [11] HU Kai, SUN Siwei, TODO Y, et al. Massive superpoly recovery with nested monomial predictions[C]. The 27th International Conference on the Theory and Application of Cryptology and Information Security, Singapore, 2021: 392–421.
    [12] SASAKI Y and TODO Y. New algorithm for modeling S-box in MILP based differential and division trail search[C]. The 10th International Conference for Information Technology and Communications, Bucharest, Romania, 2017: 150–165.
    [13] SUN Siwei, HU Lei, WANG Peng, et al. Automatic security evaluation and (related-key) differential characteristic search: Application to SIMON, PRESENT, LBlock, DES(L) and other bit-oriented block ciphers[C]. The 20th International Conference on the Theory and Application of Cryptology and Information Security, Kaoshiung, China, 2014: 158–178.
    [14] ZHOU Chunning, ZHANG Wentao, DING Tianyou, et al. Improving the MILP-based security evaluation algorithm against differential/linear cryptanalysis using a divide-and-conquer approach[J]. IACR Transactions on Symmetric Cryptology, 2019, 2019(4): 438–469. doi: 10.13154/tosc.v2019.i4.438-469
    [15] WU Hongjun and HUANG Tao. The authenticated cipher MORUS (v2)[EB/OL]. http://competitions.cr.yp.to/caesar-submissions.html, 2014.
    [16] 张沛, 关杰, 李俊志, 等. MORUS算法初始化过程的混乱与扩散性质研究[J]. 密码学报, 2015, 2(6): 536–548. doi: 10.13868/j.cnki.jcr.000100

    ZHANG Pei, GUAN Jie, LI Junzhi, et al. Research on the confusion and diffusion properties of the initialization of MORUS[J]. Journal of Cryptologic Research, 2015, 2(6): 536–548. doi: 10.13868/j.cnki.jcr.000100
    [17] 施泰荣, 关杰, 李俊志, 等. 故障模型下MORUS算法的差分扩散性质研究[J]. 软件学报, 2018, 29(9): 2861–2873. doi: 10.13328/j.cnki.jos.005282

    SHI Tairong, GUAN Jie, LI Junzhi, et al. Research on differential diffusion property of MORUS in fault model[J]. Journal of Software, 2018, 29(9): 2861–2873. doi: 10.13328/j.cnki.jos.005282
  • 加载中
图(2) / 表(12)
计量
  • 文章访问数:  457
  • HTML全文浏览量:  200
  • PDF下载量:  70
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-06-06
  • 修回日期:  2022-08-03
  • 网络出版日期:  2022-08-08
  • 刊出日期:  2023-07-10

目录

    /

    返回文章
    返回