高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

惠普忆阻电路的线性叠加分析

丁芝侠 黄莎莉 李赛 杨乐

丁芝侠, 黄莎莉, 李赛, 杨乐. 惠普忆阻电路的线性叠加分析[J]. 电子与信息学报, 2023, 45(7): 2659-2666. doi: 10.11999/JEIT220733
引用本文: 丁芝侠, 黄莎莉, 李赛, 杨乐. 惠普忆阻电路的线性叠加分析[J]. 电子与信息学报, 2023, 45(7): 2659-2666. doi: 10.11999/JEIT220733
DING Zhixia, HUANG Shali, LI Sai, YANG Le. Linear Superposition Analysis of HP Memristor Circuits[J]. Journal of Electronics & Information Technology, 2023, 45(7): 2659-2666. doi: 10.11999/JEIT220733
Citation: DING Zhixia, HUANG Shali, LI Sai, YANG Le. Linear Superposition Analysis of HP Memristor Circuits[J]. Journal of Electronics & Information Technology, 2023, 45(7): 2659-2666. doi: 10.11999/JEIT220733

惠普忆阻电路的线性叠加分析

doi: 10.11999/JEIT220733
基金项目: 国家自然科学基金(62176189, 62106181)
详细信息
    作者简介:

    丁芝侠:女,博士,副教授,研究方向为分数阶神经网络动力学分析及应用、忆阻神经形态系统、深度学习与类脑智能

    黄莎莉:女,硕士生,研究方向为忆阻电路设计、忆阻神经形态系统

    李赛:男,博士,讲师,研究方向为机器学习理论、控制与优化理论、动态系统的故障诊断

    杨乐:男,博士,讲师,研究方向为忆阻神经形态系统、深度学习与类脑智能、忆阻电路设计

    通讯作者:

    杨乐 leyangmail@163.com

  • 中图分类号: TN601

Linear Superposition Analysis of HP Memristor Circuits

Funds: The National Natural Science Foundation of China (62176189, 62106181)
  • 摘要: 基于惠普(HP)忆阻器的元件特性,该文分析了惠普忆阻器的数学关系式,惠普忆阻元件的内部状态变量与忆阻阻值之间存在增量线性关系,在外加电压下惠普忆阻器阻值的变化可叠加,得出了惠普忆阻电路具有线性叠加性的结论。通过PSpice电路仿真验证上述结论的有效性和正确性,为叠加定理在含惠普忆阻器及线性元件的线性电路中的使用提供了理论分析支撑。
  • 图  1  HP忆阻器的物理结构图

    图  2  反向求和运算电路的仿真电路图

    图  3  输入为直流电压源时运放的输出

    图  4  外加直流电压下$ {R_{\text{M}}} $上的变化

    图  5  输入为方波信号源时运放的输出

    图  6  外加方波电压下$ {R_{\text{M}}} $上的变化

    图  7  输入为正弦波信号源时运放的输出

    图  8  外加正弦波电压下$ {R_{\text{M}}} $上的变化

    表  1  直流电压下忆阻电路的输出电压值(V)

    时间(ms)Vout1Vout2V测量V计算
    0–0.505–0.632–1.136–1.137
    5–0.516–0.650–1.166–1.166
    10–0.529–0.671–1.199–1.200
    15–0.543–0.696–1.239–1.239
    20–0.560–0.726–1.285–1.286
    25–0.579–0.762–1.340–1.341
    30–0.601–0.806–1.406–1.407
    35–0.627–0.860–1.486–1.487
    40–0.657–0.930–1.587–1.587
    45–0.694–1.021–1.715–1.715
    50–0.739–1.145–1.884–1.884
    下载: 导出CSV

    表  2  方波电压下忆阻电路的输出电压值(V)

    时间(ms)Vout1Vout2V测量V计算
    00.4950.6181.1141.113
    10–0.518–0.654–1.172–1.172
    20–0.546–0.701–1.247–1.247
    30–0.583–0.769–1.351–1.352
    40–0.632–0.873–1.504–1.505
    50–0.702–1.042–1.744–1.744
    600.6310.8711.5031.502
    700.5810.7681.3501.349
    800.5450.7001.2461.245
    900.5170.6531.1701.170
    1000.4960.6181.1151.114
    下载: 导出CSV

    表  3  正弦波电压下忆阻电路的输出电压值(V)

    时间(ms)Vout1Vout2V测量V计算
    00000
    25–0.305–0.384–0.688–0.689
    50–0.552–0.728–1.280–1.280
    75–0.703–1.090–1.793–1.793
    100–0.632–1.735–2.366–2.367
    1250000
    1500.6311.7322.3642.363
    1750.7021.0881.7901.790
    2000.5510.7261.2771.277
    2250.3030.3820.6850.685
    2500000
    下载: 导出CSV
  • [1] CHUA L O. Memristor-the missing circuit element[J]. IEEE Transactions on Circuit Theory, 1971, 18(5): 507–519. doi: 10.1109/TCT.1971.1083337
    [2] STRUKOV D B, SNIDER G S, STEWART D R, et al. The missing memristor found[J]. Nature, 2008, 453(7191): 80–83. doi: 10.1038/nature06932
    [3] TOUR J M and HE Tao. Electronics: The fourth element[J]. Nature, 2008, 453(7191): 42–43. doi: 10.1038/453042a
    [4] 王小平, 沈轶, 吴计生, 等. 忆阻及其应用研究综述[J]. 自动化学报, 2013, 39(8): 1170–1184. doi: 10.3724/SP.J.1004.2013.01170

    WANG Xiaoping, SHEN Yi, WU Jisheng, et al. Review on memristor and its applications[J]. Acta Automatica Sinica, 2013, 39(8): 1170–1184. doi: 10.3724/SP.J.1004.2013.01170
    [5] YANG J J, PICKETT M D, LI Xuema, et al. Memristive switching mechanism for metal/oxide/metal nanodevices[J]. Nature Nanotechnology, 2008, 3(7): 429–433. doi: 10.1038/nnano.2008.160
    [6] SHIMA H and TAMAI Y. Oxide nanolayer improving RRAM operational performance[J]. Microelectronics Journal, 2009, 40(3): 628–632. doi: 10.1016/j.mejo.2008.06.096
    [7] LI Can, GRAVES C E, SHENG Xia, et al. Analog content-addressable memories with memristors[J]. Nature Communications, 2020, 11(1): 1638. doi: 10.1038/s41467-020-15254-4
    [8] 孙晶茹, 李梦圆, 康可欣, 等. 基于异构忆阻器的1T2M多值存储交叉阵列设计[J]. 电子与信息学报, 2021, 43(6): 1533–1540. doi: 10.11999/JEIT201108

    SUN Jingru, LI Mengyuan, KANG Kexin, et al. Design of heterogeneous memristor based 1T2M multi-value memory crossbar array[J]. Journal of Electronics &Information Technology, 2021, 43(6): 1533–1540. doi: 10.11999/JEIT201108
    [9] ALI K A, RIZK M, BAGHDADI A, et al. Crossbar memory architecture performing memristor overwrite logic[C]. 2019 26th IEEE International Conference on Electronics, Circuits and Systems (ICECS), Genoa, Italy, 2019: 723–726.
    [10] LUO Li, DONG Zhekang, DUAN Shukai, et al. Memristor-based stateful logic gates for multi-functional logic circuit[J]. IET Circuits, Devices & Systems, 2020, 14(6): 811–818. doi: 10.1049/iet-cds.2019.0422
    [11] 闵富红, 王珠林, 王恩荣, 等. 新型忆阻器混沌电路及其在图像加密中的应用[J]. 电子与信息学报, 2016, 38(10): 2681–2688. doi: 10.11999/JEIT160178

    MIN Fuhong, WANG Zhulin, WANG Enrong, et al. New Memristor chaotic circuit and its application to image encryption[J]. Journal of Electronics &Information Technology, 2016, 38(10): 2681–2688. doi: 10.11999/JEIT160178
    [12] 马铭磷, 刘颖, 李志军. 忆阻开关混沌电路及其吸引子共存现象研究[J]. 电子与信息学报, 2021, 43(12): 3758–3765. doi: 10.11999/JEIT200689

    MA Minglin, LIU Ying, and LI Zhijun. Study on coexistence of Multipe attractors in memristor-based switching chaotic circuits[J]. Journal of Electronics &Information Technology, 2021, 43(12): 3758–3765. doi: 10.11999/JEIT200689
    [13] 瞿少成, 陈尧, 罗静, 等. 一种单输入控制器下的忆阻混沌同步电路设计与实现[J]. 电子与信息学报, 2022, 44(1): 400–407. doi: 10.11999/JEIT200947

    QU Shaocheng, CHEN Yao, LUO Jing, et al. Design and implementation of Memristor-based chaotic synchronization under a single input controller[J]. Journal of Electronics &Information Technology, 2022, 44(1): 400–407. doi: 10.11999/JEIT200947
    [14] 王春华, 蔺海荣, 孙晶如, 等. 基于忆阻器的混沌、存储器及神经网络电路研究进展[J]. 电子与信息学报, 2020, 42(4): 795–810. doi: 10.11999/JEIT190821

    WANG Chunhua, LIN Hairong, SUN Jingru, et al. Research progress on chaos, memory and neural network circuits based on memristor[J]. Journal of Electronics &Information Technology, 2020, 42(4): 795–810. doi: 10.11999/JEIT190821
    [15] ZHOU Chao, WANG Chunhua, SUN Yichuang, et al. Weighted sum synchronization of memristive coupled neural networks[J]. Neurocomputing, 2020, 403: 211–233. doi: 10.1016/j.neucom.2020.04.087
    [16] LIN Hairong, WANG Chunhua, HONG Qinghui, et al. A multi-stable memristor and its application in a neural network[J]. IEEE Transactions on Circuits and Systems II:Express Briefs, 2020, 67(12): 3472–3476. doi: 10.1109/TCSII.2020.3000492
    [17] YANG Le, ZENG Zhigang, HUANG Yi, et al. Memristor-based circuit implementations of recognition network and recall network with forgetting stages[J]. IEEE Transactions on Cognitive and Developmental Systems, 2018, 10(4): 1133–1142. doi: 10.1109/TCDS.2018.2859303
    [18] YANG Le, ZENG Zhigang, and WEN Shiping. A full-function Pavlov associative memory implementation with memristance changing circuit[J]. Neurocomputing, 2018, 272: 513–519. doi: 10.1016/j.neucom.2017.07.020
    [19] HONG Qinghui, YAN Renao, WANG Chunhua, et al. Memristive circuit implementation of biological nonassociative learning mechanism and its applications[J]. IEEE Transactions on Biomedical Circuits and Systems, 2020, 14(5): 1036–1050. doi: 10.1109/TBCAS.2020.3018777
    [20] ZHANG Yutong and ZENG Zhigang. A Multi-functional memristive Pavlov associative memory circuit based on neural mechanisms[J]. IEEE Transactions on Biomedical Circuits and Systems, 2021, 15(5): 978–993. doi: 10.1109/TBCAS.2021.3108354
    [21] ADHIKARI S P, YANG Changju, KIM H, et al. Memristor bridge synapse-based neural network and its learning[J]. IEEE Transactions on Neural Networks and Learning Systems, 2012, 23(9): 1426–1435. doi: 10.1109/TNNLS.2012.2204770
    [22] WILLIAMS R S. How we found the missing memristor[J]. IEEE Spectrum, 2008, 45(12): 28–35. doi: 10.1109/MSPEC.2008.4687366
    [23] 龙际磊. 线性电路的分析方法[J]. 电脑知识与技术, 2014, 10(23): 5543–5545. doi: 10.14004/j.cnki.ckt.2014.0214

    LONG Jilei. Analysis of linear circuits[J]. Computer Knowledge and Technology, 2014, 10(23): 5543–5545. doi: 10.14004/j.cnki.ckt.2014.0214
    [24] 彭军. “纯电阻元件”与“线性元件”概念讨论[J]. 物理通报, 2017(8): 101–103. doi: 10.3969/j.issn.0509-4038.2017.08.033

    PENG Jun. Discussion on the concepts of pure resistance elements and linear elements[J]. Physics Bulletin, 2017(8): 101–103. doi: 10.3969/j.issn.0509-4038.2017.08.033
  • 加载中
图(8) / 表(3)
计量
  • 文章访问数:  519
  • HTML全文浏览量:  378
  • PDF下载量:  96
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-06-06
  • 修回日期:  2022-09-02
  • 录用日期:  2022-09-06
  • 网络出版日期:  2022-09-09
  • 刊出日期:  2023-07-10

目录

    /

    返回文章
    返回