高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

非理想条件下认知非正交多址接入系统中断性能研究

李兴旺 李岩聪 高向川 于青萍 黄高见

李兴旺, 李岩聪, 高向川, 于青萍, 黄高见. 非理想条件下认知非正交多址接入系统中断性能研究[J]. 电子与信息学报, 2023, 45(7): 2415-2422. doi: 10.11999/JEIT220721
引用本文: 李兴旺, 李岩聪, 高向川, 于青萍, 黄高见. 非理想条件下认知非正交多址接入系统中断性能研究[J]. 电子与信息学报, 2023, 45(7): 2415-2422. doi: 10.11999/JEIT220721
LI Xingwang, LI Yancong, GAO Xiangchuan, YU Qingping, HUANG Gaojian. Outage Performance Analysis of Cognitive Radio Non-Orthogonal Multiple Access System under Non-ideal Conditions[J]. Journal of Electronics & Information Technology, 2023, 45(7): 2415-2422. doi: 10.11999/JEIT220721
Citation: LI Xingwang, LI Yancong, GAO Xiangchuan, YU Qingping, HUANG Gaojian. Outage Performance Analysis of Cognitive Radio Non-Orthogonal Multiple Access System under Non-ideal Conditions[J]. Journal of Electronics & Information Technology, 2023, 45(7): 2415-2422. doi: 10.11999/JEIT220721

非理想条件下认知非正交多址接入系统中断性能研究

doi: 10.11999/JEIT220721
基金项目: 河南省科技攻关项目(212102210557),河南理工大学博士基金(B2022-2),西南石油大学“启航计划”项目(2021QHZ037),广东省基础与应用基础研究基金(2022A1515010999),广州市科技计划项目(202201011850),广东省教育厅科研项目(2021KCXTD061)
详细信息
    作者简介:

    李兴旺:男,副教授,研究方向为新一代宽带移动通信系统的新理论及技术

    李岩聪:女,硕士生,研究方向为新一代无线通信技术

    高向川:男,教授,研究方向为先进移动通信、通信信号处理与对抗、车联网-自动驾驶

    于青萍:女,讲师,研究方向为新一代无线通信技术

    黄高见:男,讲师,研究方向为阵列信号处理理论

    通讯作者:

    李兴旺 lixingwang@hpu.edu.cn

  • 中图分类号: TN92

Outage Performance Analysis of Cognitive Radio Non-Orthogonal Multiple Access System under Non-ideal Conditions

Funds: The Science and Technology Project of Henan Province (212102210557), The Doctoral Fund of Henan Polytechnic University (B2022-2), The Scientific Research Starting Project of SWPU (2021QHZ037), Guangdong Basic and Applied Basic Research Foundation (2022A1515010999), The Science and Technology Program of Guanzhou (202201011850), The Scientific Research Project of Education Department of Guangdong (2021KCXTD061)
  • 摘要: 为满足网络需求,提高系统频谱利用率,该文提出一种覆盖式认知非正交多址接入(CR-NOMA)网络。考虑实际中非线性功率放大(NLPA)、非理想连续干扰消除(ipSIC)和非完美信道状态信息(CSI)等非理性因素,研究所提网络的可靠性能,推导出系统中断概率(OP)和系统吞吐量的解析表达式,并进一步分析高信噪比下中断概率的表达式、理想状态下中断概率的高信噪比(SNR)近似、分集阶数。分析及仿真结果表明:NLPA, ipSIC和信道估计误差参数对系统中断概率性能有负面影响;中断概率随着信噪比的增加而减小,在高信噪比下收敛到一个固定常数;中断概率随着功率分配系数的改变也会产生相应的变化。
  • 图  1  系统模型

    图  2  理想和非理想条件下用户的OP与信噪比关系图

    图  3  理想和非理想条件下用户的ST与信噪比关系图

    图  4  用户的OP与功率分配系数$ {\alpha _2} $关系图

    图  5  用户的ST与功率分配系数$ {\alpha _2} $关系图

  • [1] CHOWDHURY M Z, SHAHJALAL M, AHMED S, et al. 6G wireless communication systems: Applications, requirements, technologies, challenges, and research directions[J]. IEEE Open Journal of the Communications Society, 2020, 1: 957–975. doi: 10.1109/OJCOMS.2020.3010270
    [2] DING Zhiguo, FAN Pingzhi, KARAGIANNIDIS G K, et al. NOMA assisted wireless caching: Strategies and performance analysis[J]. IEEE Transactions on Communications, 2018, 66(10): 4854–4876. doi: 10.1109/TCOMM.2018.2841929
    [3] LI Xingwang, ZHENG Yike, KHAN W U, et al. Physical layer security of cognitive ambient backscatter communications for green internet-of-things[J]. IEEE Transactions on Green Communications and Networking, 2021, 5(3): 1066–1076. doi: 10.1109/TGCN.2021.3062060
    [4] ARZYKULOV S, TSIFTSIS T A, NAURYZBAYEV G, et al. Outage performance of cooperative underlay CR-NOMA with imperfect CSI[J]. IEEE Communications Letters, 2019, 23(1): 176–179. doi: 10.1109/LCOMM.2018.2878730
    [5] WEI Zhiqiang, GUO Jiajia, NG D W K, et al. Fairness comparison of uplink NOMA and OMA[C]. 2017 IEEE 85th Vehicular Technology Conference (VTC Spring), Sydney, Australia, 2017: 1–6.
    [6] 唐伦, 李子煜, 管令进, 等. 异构云无线接入网下基于功率域NOMA的能效优化算法[J]. 电子与信息学报, 2021, 43(6): 1706–1714. doi: 10.11999/JEIT200327

    TANG Lun, LI Ziyu, GUAN Lingjin, et al. Energy efficiency optimization algorithm based On PD-NOMA under heterogeneous cloud radio access networks[J]. Journal of Electronics &Information Technology, 2021, 43(6): 1706–1714. doi: 10.11999/JEIT200327
    [7] SHI Zheng, ZHANG Chenmeng, FU Yaru, et al. Achievable diversity order of HARQ-aided downlink NOMA systems[J]. IEEE Transactions on Vehicular Technology, 2020, 69(1): 471–487. doi: 10.1109/TVT.2019.2950067
    [8] 徐勇军, 刘子腱, 李国权, 等. 基于NOMA的无线携能D2D通信鲁棒能效优化算法[J]. 电子与信息学报, 2021, 43(5): 1289–1297. doi: 10.11999/JEIT200175

    XU Yongjun, LIU Zijian, LI Guoquan, et al. Robust energy efficiency optimization algorithm for NOMA-based D2D communication with simultaneous wireless information and power transfer[J]. Journal of Electronics &Information Technology, 2021, 43(5): 1289–1297. doi: 10.11999/JEIT200175
    [9] ZHOU Fuhui, WU Yongpeng, LIANG Yingchang, et al. State of the art, taxonomy, and open issues on cognitive radio networks with NOMA[J]. IEEE Wireless Communications, 2018, 25(2): 100–108. doi: 10.1109/MWC.2018.1700113
    [10] LI Xingwang, ZHENG Yike, ALSHEHRI M D, et al. Cognitive AmBC-NOMA IoV-MTS networks with IQI: Reliability and security analysis[J]. IEEE Transactions on Intelligent Transportation Systems, 2023, 24(2): 2596–2607. doi: 10.1109/TITS.2021.3113995
    [11] BARIAH L, MUHAIDAT S, and AL-DWEIK A. Error Performance of NOMA-based cognitive radio networks with partial relay selection and interference power constraints[J]. IEEE Transactions on Communications, 2020, 68(2): 765–777. doi: 10.1109/TCOMM.2019.2921360
    [12] WEI Luwei, JING Tao, FAN Xin, et al. The secrecy analysis over physical layer in NOMA-enabled cognitive radio networks[C]. 2018 IEEE International Conference on Communications (ICC), Kansas City, USA, 2018: 1–6.
    [13] LV Lu, YANG Long, JIANG Hai, et al. When NOMA meets multiuser cognitive radio: Opportunistic cooperation and user scheduling[J]. IEEE Transactions on Vehicular Technology, 2018, 67(7): 6679–6684. doi: 10.1109/TVT.2018.2805638
    [14] SANTELLA G and MAZZENGA F. A hybrid analytical-simulation procedure for performance evaluation in M-QAM-OFDM schemes in presence of nonlinear distortions[J]. IEEE Transactions on Vehicular Technology, 1998, 47(1): 142–151. doi: 10.1109/25.661041
    [15] LI Xingwang, LIU Meng, DENG Chao, et al. Joint effects of residual hardware impairments and channel estimation errors on SWIPT assisted cooperative NOMA networks[J]. IEEE Access, 2019, 7: 135499–135513. doi: 10.1109/ACCESS.2019.2942337
    [16] SINGYA P K, KUMAR N, BHATIA V, et al. Performance analysis of opportunistic two-way 3P-ANC multi-relay system with imperfect CSI and NLPA[C]. 2018 IEEE Global Communications Conference (GLOBECOM), Abu Dhabi, United Arab Emirates, 2018: 206–212.
    [17] SINGYA P K, KUMAR N, BHATIA V, et al. On performance of hexagonal, cross, and rectangular QAM for multi-relay systems[J]. IEEE Access, 2019, 7: 60602–60616. doi: 10.1109/ACCESS.2019.2915375
    [18] 王夕予, 许晓明, 陈亚军. 非理想连续干扰消除下非正交多址接入上行传输系统性能分析[J]. 电子与信息学报, 2019, 41(12): 2795–2801. doi: 10.11999/JEIT181165

    WANG Xiyu, YU Xiaoming, and CHEN Yajun. Performances analysis in uplink non-orthogonal multiple access system with imperfect successive interference cancellation[J]. Journal of Electronics &Information Technology, 2019, 41(12): 2795–2801. doi: 10.11999/JEIT181165
    [19] LI Xingwang, WANG Qunshu, LIU Meng, et al. Cooperative wireless-powered NOMA Relaying for B5G IoT networks with hardware impairments and channel estimation errors[J]. IEEE Internet of Things Journal, 2021, 8(7): 5453–5467. doi: 10.1109/JIOT.2020.3029754
    [20] LI Xingwang, LI Jingjing, LIU Yuanwei, et al. Residual transceiver hardware impairments on cooperative NOMA networks[J]. IEEE Transactions on Wireless Communications, 2020, 19(1): 680–695. doi: 10.1109/TWC.2019.2947670
    [21] HASNA M O and ALOUINI M S. A performance study of dual-hop transmissions with fixed gain relays[C]. 2003 IEEE International Conference on Acoustics, Speech, and Signal Processing, Hong Kong, China, 2003, IV-189.
    [22] BALTI E and GUIZANI M. Impact of non-linear high-power amplifiers on cooperative relaying systems[J]. IEEE Transactions on Communications, 2017, 65(10): 4163–4175. doi: 10.1109/TCOMM.2017.2722499
    [23] KUMAR D, SINGYA P K, and BHATIA V. Performance analysis of hybrid two-way relay network with NLPA and hardware impairments[C]. 2021 IEEE Wireless Communications and Networking Conference (WCNC), Nanjing, China 2021: 1–6.
    [24] SIMMONS D E and COON J P. Two-Way OFDM-based nonlinear amplify-and-forward relay systems[J]. IEEE Transactions on Vehicular Technology, 2016, 65(5): 3808–3812. doi: 10.1109/TVT.2015.2436713
  • 加载中
图(5)
计量
  • 文章访问数:  471
  • HTML全文浏览量:  211
  • PDF下载量:  119
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-06-01
  • 修回日期:  2022-08-31
  • 网络出版日期:  2022-09-02
  • 刊出日期:  2023-07-10

目录

    /

    返回文章
    返回