高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于改进的忆阻器在字符联想记忆中的应用

王雷敏 程佳俊 胡成 周映江 葛明峰

王雷敏, 程佳俊, 胡成, 周映江, 葛明峰. 基于改进的忆阻器在字符联想记忆中的应用[J]. 电子与信息学报, 2023, 45(7): 2667-2674. doi: 10.11999/JEIT220709
引用本文: 王雷敏, 程佳俊, 胡成, 周映江, 葛明峰. 基于改进的忆阻器在字符联想记忆中的应用[J]. 电子与信息学报, 2023, 45(7): 2667-2674. doi: 10.11999/JEIT220709
WANG Leimin, CHENG Jiajun, HU Cheng, ZHOU Yingjiang, GE Mingfeng. Application of Improved Memristor in Character Associative Memory[J]. Journal of Electronics & Information Technology, 2023, 45(7): 2667-2674. doi: 10.11999/JEIT220709
Citation: WANG Leimin, CHENG Jiajun, HU Cheng, ZHOU Yingjiang, GE Mingfeng. Application of Improved Memristor in Character Associative Memory[J]. Journal of Electronics & Information Technology, 2023, 45(7): 2667-2674. doi: 10.11999/JEIT220709

基于改进的忆阻器在字符联想记忆中的应用

doi: 10.11999/JEIT220709
基金项目: 国家自然科学基金(62076229, 61963033, 62073301)
详细信息
    作者简介:

    王雷敏:男,教授,研究方向为忆阻电路设计及忆阻神经网络应用

    程佳俊:男,硕士生,研究方向为忆阻电路设计及忆阻神经网络应用

    胡成:男,教授,研究方向为神经网络动力学及应用

    周映江:男,副教授,研究方向为多智能体系统分析及应用

    葛明峰:男,教授,研究方向为多机器人系统分析及应用

    通讯作者:

    王雷敏 wangleimin@cug.edu.cn

  • 中图分类号: TN601

Application of Improved Memristor in Character Associative Memory

Funds: The National Natural Science Foundation of China (62076229, 61963033, 62073301)
  • 摘要: 忆阻因具有阻值可调、记忆特性以及纳米尺寸等特点,非常适合作为实现神经网络突触的电子元器件。为构建出更加符合真实物理忆阻器特性的忆阻器模型,该文在现有忆阻器模型的基础之上,克服了边界锁定、正负电压调整速率问题以及电路结构通用性问题,提出一种改进忆阻器模型。然后结合Pavlov联想记忆实验和Hopfield神经网络理论设计出了该文的字符联想记忆电路。电路结构主要有输入信号模块、突触阵列模块、激活函数模块以及反馈控制模块。该电路可以解决因传统阵列模块使用电阻作为突触模块的灵活性问题,而且还可以实现对3阶字符模糊图像的自联想功能。此外,该电路与深度学习相关的卷积计算模块原理类似,为实现基于忆阻的智能硬件奠定了理论基础。
  • 图  1  DHNNs结构示意图

    图  2  忆阻神经网络电路结构

    图  3  忆阻神经网络整体电路

    图  4  本文神经网络模型

    图  5  忆阻神经网络联想记忆过程

    图  6  字符“C”神经元输出电压曲线图

    图  7  字符“U”神经元输出电压曲线图

    图  8  字符“H”神经元输出电压曲线图

    表  1  本文模型与现有的部分代表性忆阻模型的比较

    文献功能实现
    伏安特性边界锁定控制类型阈值特性遗忘特性逻辑电路突触电路
    线性漂移[2]明确存在问题电流不适用不适用
    Joglekar[25]明确存在问题电流不适用不适用
    Biolek[26]明确电流适用不适用
    TEAM[27]明确电流适用不适用
    VTEAM[28]明确电压适用不适用
    本文明确电压适用适用
    下载: 导出CSV

    表  2  忆阻联想记忆模型功能完善程度对比

    文献功能实现
    联想记忆可重用抗噪声连续性
    [10, 17]
    [18, 20]
    本文
    下载: 导出CSV
  • [1] CHUA L. Memristor-the missing circuit element[J]. IEEE Transactions on Circuit Theory, 1971, 18(5): 507–519. doi: 10.1109/TCT.1971.1083337
    [2] STRUKOV D B, SNIDER G S, STEWART D R, et al. The missing memristor found[J]. Nature, 2008, 453(7191): 80–83. doi: 10.1038/nature06932
    [3] WANG Leimin, ZENG Zhigang, and GE Mingfeng. A disturbance rejection framework for finite-time and fixed-time stabilization of delayed memristive neural networks[J]. IEEE Transactions on Systems, Man, and Cybernetics:Systems, 2021, 51(2): 905–915. doi: 10.1109/TSMC.2018.2888867
    [4] GUO Mei, ZHU Yongliang, LIU Renyuan, et al. An associative memory circuit based on physical memristors[J]. Neurocomputing, 2022, 472: 12–23. doi: 10.1016/j.neucom.2021.11.034
    [5] LAI Qiang, WAN Zhiqiang, ZHANG Hui, et al. Design and analysis of multiscroll memristive Hopfield neural network with adjustable memductance and application to image encryption[J]. IEEE Transactions on Neural Networks and Learning Systems, To be published.
    [6] ZHANG Yang, WANG Xiaoping, LI Yi, et al. Memristive model for synaptic circuits[J]. IEEE Transactions on Circuits and Systems II:Express Briefs, 2017, 64(7): 767–771. doi: 10.1109/TCSII.2016.2605069
    [7] CHANG Ting, JO S H, and LU Wei. Short-term memory to long-term memory transition in a nanoscale memristor[J]. ACS Nano, 2011, 5(9): 7669–7676. doi: 10.1021/nn202983n
    [8] 王春华, 蔺海荣, 孙晶如, 等. 基于忆阻器的混沌、存储器及神经网络电路研究进展[J]. 电子与信息学报, 2020, 42(4): 795–810. doi: 10.11999/JEIT190821

    WANG Chunhua, LIN Hairong, SUN Jingru, et al. Research progress on chaos, memory and neural network circuits based on memristor[J]. Journal of Electronics &Information Technology, 2020, 42(4): 795–810. doi: 10.11999/JEIT190821
    [9] 李志军, 谭茂林, 王梦蛟, 等. 具有艾宾浩斯遗忘规则的忆阻联想记忆电路[J]. 电子与信息学报, 2022, 44(10): 3657–3665. doi: 10.11999/JEIT210677

    LI Zhijun, TAN Maolin, WANG Mengjiao, et al. Associative memory circuit based on memristor with the ebbinghaus forgetting rule[J]. Journal of Electronics &Information Technology, 2022, 44(10): 3657–3665. doi: 10.11999/JEIT210677
    [10] HU S G, LIU Y, LIU Z, et al. Associative memory realized by a reconfigurable memristive hopfield neural network[J]. Nature Communications, 2015, 6: 7522. doi: 10.1038/ncomms8522
    [11] LI Haoyu, WANG Leimin, and LAI Qiang. Synchronization of a memristor chaotic system and image encryption[J]. International Journal of Bifurcation and Chaos, 2021, 31(16): 2150251. doi: 10.1142/S0218127421502515
    [12] 董哲康, 钱智凯, 周广东, 等. 基于忆阻的全功能巴甫洛夫联想记忆电路的设计、实现与分析[J]. 电子与信息学报, 2022, 44(6): 2080–2092. doi: 10.11999/JEIT210376

    DONG Zhekang, QIAN Zhikai, ZHOU Guangdong, et al. Memory circuit design, implementation and analysis based on memristor full-function Pavlov associative[J]. Journal of Electronics &Information Technology, 2022, 44(6): 2080–2092. doi: 10.11999/JEIT210376
    [13] HOPFIELD J J. Neural networks and physical systems with emergent collective computational abilities[J]. Proceedings of the National Academy of Sciences of Sciences of the United States of America, 1982, 79(8): 2554–2558. doi: 10.1073/pnas.79.8.2554
    [14] HOPFIELD J J. Neurons with graded response have collective computational properties like those of two-state neurons[J]. Proceedings of the National Academy of Sciences of the United States of America, 1984, 81(10): 3088–3092. doi: 10.1073/pnas.81.10.3088
    [15] GUO Tengteng, WANG Lidan, ZHOU Mengzhe, et al. A recurrent neural network based on memristive activation function and its associative memory[J]. Scientia Sinica Informationis, 2017, 47(9): 1226–1241. doi: 10.1360/N112016-00266
    [16] TARKOV M S. Hopfield network with interneuronal connections based on memristor bridges[C]. The 13th International Symposium on Neural Networks. St. Petersburg, Russia: Springer, 2016: 196–203.
    [17] YANG Jiu, WANG Lidan, WANG Yan, et al. A novel memristive Hopfield neural network with application in associative memory[J]. Neurocomputing, 2017, 227: 142–148. doi: 10.1016/j.neucom.2016.07.065
    [18] HONG Qinghui, YAN Renao, WANG Chunhua, et al. Memristive circuit implementation of biological nonassociative learning mechanism and its applications[J]. IEEE Transactions on Biomedical Circuits and Systems, 2020, 14(5): 1036–1050. doi: 10.1109/TBCAS.2020.3018777
    [19] CHEN Chengjie, CHEN Jingqi, BAO Han, et al. Coexisting multi-stable patterns in memristor synapse-coupled Hopfield neural network with two neurons[J]. Nonlinear Dynamics, 2019, 95(4): 3385–3399. doi: 10.1007/s11071-019-04762-8
    [20] SUN Junwei, XIAO Xiao, YANG Qinfei, et al. Memristor-based Hopfield network circuit for recognition and sequencing application[J]. AEU-International Journal of Electronics and Communications, 2021, 134: 153698. doi: 10.1016/j.aeue.2021.153698
    [21] WANG Leimin and ZOU Huayu. A new emotion model of associative memory neural network based on memristor[J]. Neurocomputing, 2020, 410: 83–92. doi: 10.1016/j.neucom.2020.05.002
    [22] HONG Qinghui, CHEN Hegan, SUN Jingru, et al. Memristive circuit implementation of a self-repairing network based on biological astrocytes in robot application[J]. IEEE Transactions on Neural Networks and Learning Systems, 2022, 33(5): 2106–2120. doi: 10.1109/TNNLS.2020.3041624
    [23] HONG Qinghui, SHI Zirui, SUN Jingru, et al. Memristive self-learning logic circuit with application to encoder and decoder[J]. Neural Computing and Applications, 2021, 33(10): 4901–4913. doi: 10.1007/s00521-020-05281-z
    [24] YAN Renao, HONG Qinghui, WANG Chunhua, et al. Multilayer memristive neural network circuit based on online learning for license plate detection[J]. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 2022, 41(9): 3000–3011. doi: 10.1109/TCAD.2021.3121347
    [25] JOGLEKAR Y N and WOLF S J. The elusive memristor: Properties of basic electrical circuits[J]. European Journal of Physics, 2009, 30(4): 661–675. doi: 10.1088/0143-0807/30/4/001
    [26] BIOLEK Z, BIOLEK D, and BIOLKOVÁ V. SPICE model of memristor with nonlinear dopant drift[J]. Radioengineering, 2009, 18(2): 210–214.
    [27] KVATINSKY S, FRIEDMAN E G, KOLODNY A, et al. TEAM: Threshold adaptive memristor model[J]. IEEE Transactions on Circuits and Systems I:Regular Papers, 2013, 60(1): 211–221. doi: 10.1109/TCSI.2012.2215714
    [28] KVATINSKY S, RAMADAN M, FRIEDMAN E G, et al. VTEAM: A general model for voltage-controlled memristors[J]. IEEE Transactions on Circuits and Systems II:Express Briefs, 2015, 62(8): 786–790. doi: 10.1109/TCSII.2015.2433536
  • 加载中
图(8) / 表(2)
计量
  • 文章访问数:  575
  • HTML全文浏览量:  283
  • PDF下载量:  107
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-05-31
  • 修回日期:  2022-09-15
  • 网络出版日期:  2022-11-20
  • 刊出日期:  2023-07-10

目录

    /

    返回文章
    返回