高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

一种基于酉矩阵变换的低峰均比正交时频空安全传输方法

鲁信金 雷菁 李为 赖雄坤 邓喆

鲁信金, 雷菁, 李为, 赖雄坤, 邓喆. 一种基于酉矩阵变换的低峰均比正交时频空安全传输方法[J]. 电子与信息学报, 2023, 45(7): 2395-2405. doi: 10.11999/JEIT220678
引用本文: 鲁信金, 雷菁, 李为, 赖雄坤, 邓喆. 一种基于酉矩阵变换的低峰均比正交时频空安全传输方法[J]. 电子与信息学报, 2023, 45(7): 2395-2405. doi: 10.11999/JEIT220678
LU Xinjin, LEI Jing, LI Wei, LAI Xiongkun, DENG Zhe. A Low Peak-to-average Ratio Secure Transmission Method Based on U Matrix Transformation in Orthogonal Time and Frequency Space System[J]. Journal of Electronics & Information Technology, 2023, 45(7): 2395-2405. doi: 10.11999/JEIT220678
Citation: LU Xinjin, LEI Jing, LI Wei, LAI Xiongkun, DENG Zhe. A Low Peak-to-average Ratio Secure Transmission Method Based on U Matrix Transformation in Orthogonal Time and Frequency Space System[J]. Journal of Electronics & Information Technology, 2023, 45(7): 2395-2405. doi: 10.11999/JEIT220678

一种基于酉矩阵变换的低峰均比正交时频空安全传输方法

doi: 10.11999/JEIT220678
基金项目: 国家自然科学基金(6217072012, 6217010609)
详细信息
    作者简介:

    鲁信金:女,博士生,研究方向为物理层安全、索引调制、polar码等

    雷菁:女,博士,教授,研究方向为信息论、LDPC、空时编码、先进的多址技术、物理层安全、无线通信技术等

    李为:男,博士,副教授,研究方向为无线通信、无线网络资源分配、物理层安全等

    赖雄坤:男,硕士,研究方向为无线通信技术、卫星定位技术

    邓喆:男,硕士生,研究方向为现代通信技术

    通讯作者:

    雷菁 leijing@nudt.edu.cn

  • 中图分类号: TN918.91

A Low Peak-to-average Ratio Secure Transmission Method Based on U Matrix Transformation in Orthogonal Time and Frequency Space System

Funds: The National Natural Science Foundation of China (6217072012, 6217010609)
  • 摘要: 为了降低正交时频空(OTFS)系统峰均比(PAPR)并且提升系统安全性,该文设计了一种基于酉矩阵变换的低峰均功率比OTFS安全传输方法。在该方法中,通过无线信道的时延多普勒(DD)域产生初始密钥,并将其作为混沌系统初始值进一步产生混沌序列。利用混沌序列进行酉矩阵设计,使得经过酉矩阵变换后的符号完全被混淆,具有类噪声的随机特性。此外通过索引控制酉矩阵选择,发射端将不同酉矩阵变换得到的OTFS时域信号进行排序并选择PAPR最低的信号进行发送。合法接收方获得索引值后可以正确解密和解调,而窃听者即使获得索引值信息,由于其没有相应的加密酉矩阵,为此无法正确解密。理论分析和仿真结果表明,所提方法在保证系统可靠性的前提下有效降低OTFS系统的PAPR。此外经过酉矩阵变换后的星座图呈现球状混乱,这使得调制方式和信息得以隐蔽,增大了窃听者的解密难度,系统的安全性得到保证。
  • 图  1  基于酉矩阵变换的低峰均比OTFS安全传输模型

    图  2  密钥提取流程图

    图  3  信道冲击响应

    图  4  由无线初始密钥生成的混沌空间

    图  5  发送端PRPR抑制的加密信号处理

    图  6  加解密酉矩阵的索引值映射

    图  7  N=16, M=16时不同Q选择下的CCDF

    图  8  N=32, M=32时不同Q选择下的CCDF

    图  9  N=64, M=64时不同Q选择下的CCDF

    图  10  N=128, M=128时不同Q选择下的CCDF

    图  11  Q=1时不同M×N选择下理论和仿真的CCDF

    图  12  N=128, M=128时不同Q选择下理论和仿真的CCDF对比

    图  13  所提方案的星座图变化

    图  14  QPSK星座经过U矩阵加密变换前后信息熵比较

    图  15  SNR=30 dB所提方案与文献[31]方案的窃听者星座图对比

    图  16  OTFS系统加密前后合法端和窃听者的误码性能比较

    算法1 安全矩阵生成算法
     输入:混沌序列$ {S_0} $;
     输出:安全矩阵${{\boldsymbol{U}}}$;
     (1) 将$ {S_0} $分成$W$块序列${S_1},{S_2}, \cdots {S_i} \cdots {S_W}$;
     (2) 从$i = 1$到${W^2}$循环执行(3)~(5)
     (3) $S'_i = {\text{hash} }({S_i})$;
     (4) ${\theta _i} = 2{\pi }(S'_i\bmod \lambda )/\lambda$;
     (5) 结束循环
     (6) 利用旋转矢量$ {\theta } $构建$ W \times W $的矩阵${ {{\boldsymbol{U}}}' }$;
     (7) 对${ {{\boldsymbol{U}}}'}$进行Gram正交化得到${{\boldsymbol{U}}}$
     (8) 返回${{\boldsymbol{U}}}$。
    下载: 导出CSV
  • [1] SOLDANI D, GUO Y J, BARANI B, et al. 5G for ultra-reliable low-latency communications[J]. IEEE Network, 2018, 32(2): 6–7. doi: 10.1109/MNET.2018.8329617
    [2] MOUNTASER G, MAHMOODI T, and SIMEONE O. Reliable and low-latency Fronthaul for tactile internet applications[J]. IEEE Journal on Selected Areas in Communications, 2018, 36(11): 2455–2463. doi: 10.1109/JSAC.2018.2872299
    [3] JI Xingsheng, HUANG Kaizhi, JIN Liang, et al. Overview of 5G security technology[J]. Science China Information Sciences, 2018, 61(8): 081301. doi: 10.1007/s11432-017-9426-4
    [4] SHIU Y S, CHANG S Y, WU H C, et al. Physical layer security in wireless networks: A tutorial[J]. IEEE Wireless Communications, 2011, 18(2): 66–74. doi: 10.1109/MWC.2011.5751298
    [5] LU Xinjin, LEI Jing, and LI Wei. A physical layer encryption algorithm based on length-compatible polar codes[C]. 2020 IEEE 92nd Vehicular Technology Conference (VTC2020-Fall), Victoria, Canada, 2020: 1–7.
    [6] 彭建华, 张帅, 许晓明, 等. 物联网中一种抗大规模天线阵列窃听者的噪声注入方案[J]. 电子与信息学报, 2019, 41(1): 67–73. doi: 10.11999/JEIT180342

    PENG Jianhua, ZHANG Shuai, XU Xiaoming, et al. A noise injection scheme resistant to massive MIMO eavesdropper in IoT[J]. Journal of Electronics &Information Technology, 2019, 41(1): 67–73. doi: 10.11999/JEIT180342
    [7] LU Xinjin, LEI Jing, SHI Yuxin, et al. Intelligent reflecting surface assisted secret key generation[J]. IEEE Signal Processing Letters, 2021, 28: 1036–1040. doi: 10.1109/LSP.2021.3061301
    [8] 鲁信金, 雷菁, 施育鑫. 基于旋转置乱的索引跳频抗干扰加密方法[J]. 通信学报, 2021, 42(12): 27–34. doi: 10.11959/j.issn.1000-436x.2021239

    LU Xinjin, LEI Jing, and SHI Yuxin. Index modulation aided frequency hopping anti-jamming and encryption method based on rotation scrambling[J]. Journal on Communications, 2021, 42(12): 27–34. doi: 10.11959/j.issn.1000-436x.2021239
    [9] MATTHEWS R. On the derivation of a “chaotic” encryption algorithm[J]. Cryptologia, 1989, 13(1): 29–42. doi: 10.1080/0161-118991863745
    [10] 李春彪, 赵云楠, 李雅宁, 等. 基于正弦反馈Logistic混沌映射的图像加密算法及其FPGA实现[J]. 电子与信息学报, 2021, 43(12): 3766–3774. doi: 10.11999/JEIT200575

    LI Chunbiao, ZHAO Yunnan, LI Yaning, et al. An image encryption algorithm based on logistic chaotic mapping with sinusoidal feedback and its FPGA implementation[J]. Journal of Electronics &Information Technology, 2021, 43(12): 3766–3774. doi: 10.11999/JEIT200575
    [11] LU Xinjin, SHI Yuxin, LI Wei, et al. A joint physical layer encryption and PAPR reduction scheme based on polar codes and chaotic sequences in OFDM system[J]. IEEE Access, 2019, 7: 73036–73045. doi: 10.1109/ACCESS.2019.2919598
    [12] RAPPAPORT T S, 周文安, 付秀花, 王志辉, 等译. 无线通信原理与应用[M]. 2版. 北京: 电子工业出版社, 2006.

    RAPPAPORT T S, ZHOU Wenan, FU Xiuhua, WANG Zhihui, et al. translation. Wireless Communications Principles and Practice[M]. 2nd ed. Beijing: Publishing House of Electronics Industry, 2006.
    [13] TUSHA A, DOĞAN S, and ARSLAN H. A hybrid downlink NOMA with OFDM and OFDM-IM for beyond 5G wireless networks[J]. IEEE Signal Processing Letters, 2020, 27: 491–495. doi: 10.1109/LSP.2020.2979059
    [14] SHI Yuxin, LU Xinjin, GAO Kai, et al. Genetic algorithm aided OFDM with all index modulation[J]. IEEE Communications Letters, 2019, 23(12): 2192–2195. doi: 10.1109/LCOMM.2019.2942915
    [15] RONNY H and SELIM R S. OTFS methods of data channel characterization and uses thereof[P]. US, 9444514-B2, 2016.
    [16] HADANI R, RAKIB S, TSATSANIS M, et al. Orthogonal time frequency space modulation[C]. 2017 IEEE Wireless Communications and Networking Conference (WCNC), San Francisco, USA, 2017: 1–6.
    [17] JIANG Tao and WU Yiyan. An overview: Peak-to-average power ratio reduction techniques for OFDM signals[J]. IEEE Transactions on Broadcasting, 2008, 54(2): 257–268. doi: 10.1109/TBC.2008.915770
    [18] SURABHI G D, AUGUSTINE R M, and CHOCKALINGAM A. Peak-to-average power ratio of OTFS modulation[J]. IEEE Communications Letters, 2019, 23(6): 999–1002. doi: 10.1109/LCOMM.2019.2914042
    [19] GAO Shuang and ZHENG Jianping. Peak-to-average power ratio reduction in pilot-embedded OTFS modulation through iterative clipping and filtering[J]. IEEE Communications Letters, 2020, 24(9): 2055–2059. doi: 10.1109/LCOMM.2020.2993036
    [20] LIU Mengxue, ZHAO Mingmin, LEI Ming, et al. Autoencoder based PAPR reduction for OTFS modulation[C]. 2021 IEEE 94th Vehicular Technology Conference (VTC2021-Fall), Norman, USA, 2021: 1–5.
    [21] NAVEEN C and SUDHA V. Peak-to-average power ratio reduction in OTFS modulation using companding technique[C]. 2020 5th International Conference on Devices, Circuits and Systems, Coimbatore, India, 2020: 140–143.
    [22] FRANCIS J K, AUGUSTINE R M, and CHOCKALINGAM A. Diversity and PAPR enhancement in OTFS using indexing[C]. 2021 IEEE 93rd Vehicular Technology Conference (VTC2021-Spring), Helsinki, Finland, 2021: 1–6.
    [23] HU Junfan, SHI Jia, MA Shuai, et al. Secrecy analysis for orthogonal time frequency space scheme based uplink LEO satellite communication[J]. IEEE Wireless Communications Letters, 2021, 10(8): 1623–1627. doi: 10.1109/LWC.2021.3072902
    [24] 杨欣, 邱彬, 谢坚, 等. 一种基于正交时频空方向调制安全通信方法[P]. 中国专利, 112398775A, 2021.

    YANG Xin, QIU Bin, XIE Jian, et al. Secure communication method based on orthogonal time-frequency-space direction modulation[P]. China Patent, 112398775A, 2021.
    [25] SUN Jinjing, WANG Zulin, and HUANG Qin. Secure Precoded orthogonal time frequency space modulation[C]. 2021 13th International Conference on Wireless Communications and Signal Processing (WCSP), Changsha, China, 2021: 1–5.
    [26] WEI Yunchuan, ZENG Kai, and MOHAPATRA P. Adaptive wireless channel probing for shared key generation[C]. 2011 Proceedings IEEE INFOCOM, Shanghai, China, 2011: 2165–2173.
    [27] PENG Yuexing, WANG Peng, XIANG Wei, et al. Secret key generation based on estimated channel state information for TDD-OFDM systems over fading channels[J]. IEEE Transactions on Wireless Communications, 2017, 16(8): 5176–5186. doi: 10.1109/TWC.2017.2706657
    [28] LÜ Jinhu and CHEN Guanrong. A new chaotic attractor coined[J]. International Journal of Bifurcation and Chaos, 2002, 12(3): 659–661. doi: 10.1142/S0218127402004620
    [29] MORTARI D. On the rigid rotation concept in n-dimensional spaces[J]. The Journal of the Astronautical Sciences, 2001, 49(3): 401–420. doi: 10.1007/BF03546230
    [30] 田鑫. 基于FPGA的SHA-3算法硬件实现优化与系统设计[D]. [硕士论文], 西安电子科技大学, 2020: 8–12.

    Tian Xin. Hardware implementation optimization and system design of SHA-3 algorithm based on FPGA[D]. [Master dissertation], Xidian University, 2020: 8–12.
    [31] SENGIJPTA S K. Fundamentals of statistical signal processing: Estimation theory[J]. Technometrics, 1995, 37(4): 465–466. doi: 10.1080/00401706.1995.10484391
  • 加载中
图(16) / 表(1)
计量
  • 文章访问数:  606
  • HTML全文浏览量:  402
  • PDF下载量:  129
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-05-26
  • 修回日期:  2022-09-08
  • 网络出版日期:  2022-09-16
  • 刊出日期:  2023-07-10

目录

    /

    返回文章
    返回