Online Control Algorithm of Power and Rate in Energy Harvesting Communication Systems
-
摘要: 该文针对发送端由能量收集(EH)设备供电的无线通信系统,研究在能量收集和信道状态先验信息未知的条件下,以最大化实际可达传输速率为目标的发送功率、调制方式和信道编码码率的联合优化问题。基于Lyapunov优化框架,将能量使用的长期约束转换为能量虚队列的稳定性要求,将能量使用约束下的长期时间平均实际可达传输速率最大化问题转化为单时隙的、仅依赖于当前信道状态和电池状态的“漂移加惩罚”项上界的最小化问题。优化问题通过一个高效的数值方法求解。另外还给出了基于滑动窗口的K-means聚类方法的“漂移加惩罚”中权重和电池电量虚队列偏移量两个参数的自适应调整算法。在不同能量到达随机模型下与对比算法进行了性能的仿真对比,结果表明,该文所提算法在各种能量到达模型下都能获得更高的长期平均实际可达传输速率。另外,通过与参数固定为最优情况下算法性能的对比,证明参数自适应调整算法正确、有效。Abstract: In this paper, the joint optimization of transmission power, modulation mode and the rate of channel codes is studied in wireless communication systems with Energy Harvesting(EH) when the prior information of energy harvesting and channel state is unknown. The target of the optimization is to maximize the actual achievable transmission rate. Based on the Lyapunov optimization framework, the long-term constraint of energy is transformed into the stability requirement of energy virtual queue, and the maximization of the long-term average achievable transmission rate is transformed to the minimization of the upper bound on the “drift-plus-penalty” at each time slot that only depends on the current system state such as channel fading and battery power level. The optimization is solved by using an efficient numerical algorithm. In addition, an adaptive adjustment method for the two parameters, that is, weight and virtual queue offset in “drift-plus-penalty” based on sliding window K-means clustering is given. The performance of the proposed algorithm is compared with that of the comparison algorithms under different energy arrival stochastic models by computer simulation. The results show that the proposed algorithm can achieve a higher long-term average rate under various energy arrival models. The correctness and effectiveness of the adaptive adjustment of the two parameters are verified by the performance comparing between the algorithm with the optimal parameters and with the adaptive adjusted parameters.
-
Key words:
- Energy Harvesting(EH) /
- Power /
- Rate adaptive /
- Modulation /
- Channel codes
-
算法1 P3的求解算法 设定参数:V, A, Peb,max; 输入:Ω, K, δ1, δ2; 输出:M, k, PT(t), Rb(t); 在时隙t: (1) for M∈Ω do (2) 将Peb,max代入式(3)求得PT,min; (3) for k∈K do (4) Pcc(t)=Pc(t)+Pm(t)+PA; (5) 由式(26)计算得到PT,max; (6) if PT,min<PT,max (7) if X(t)>0 (8) PT(t)=PT,max; (9) else (10) 利用算法1搜索最优发送功率PT(t); (11) end if (12) else (13) PT(t)=0; (14) end if (15) end for (16) end for (17) 选择最大目标函数对应的PT(t), M, k ; (18) return PT(t), M, k, Rb; -
[1] ALTINEL D and KURT G K. Modeling of hybrid energy harvesting communication systems[J]. IEEE Transactions on Green Communications and Networking, 2019, 3(2): 523–534. doi: 10.1109/TGCN.2019.2908086 [2] WANG Zhe, AGGARWAL V, and WANG Xiaodong. Iterative dynamic water-filling for fading multiple-access channels with energy harvesting[J]. IEEE Journal on Selected Areas in Communications, 2015, 33(3): 382–395. doi: 10.1109/JSAC.2015.2391571 [3] HO C K and ZHANG Rui. Optimal energy allocation for wireless communications with energy harvesting constraints[J]. IEEE Transactions on Signal Processing, 2012, 60(9): 4808–4818. doi: 10.1109/TSP.2012.2199984 [4] BRACCIALE L and LORETI P. Lyapunov drift-plus-penalty optimization for queues with finite capacity[J]. IEEE Communications Letters, 2020, 24(11): 2555–2558. doi: 10.1109/LCOMM.2020.3013125 [5] AMIRNAVAEI F and DONG Min. Online power control optimization for wireless transmission with energy harvesting and storage[J]. IEEE Transactions on Wireless Communications, 2016, 15(7): 4888–4901. doi: 10.1109/TWC.2016.2548459 [6] LEI Weijia and LI Qin. Online power control based on Lyapunov optimization framework for decode-and-forward relay systems with energy harvesting[J]. IEEE Access, 2019, 7: 71335–71349. doi: 10.1109/ACCESS.2019.2919968 [7] MA Rui and ZHANG Wei. Adaptive MQAM for energy harvesting wireless communications with 1-Bit channel feedback[J]. IEEE Transactions on Wireless Communications, 2015, 14(11): 6459–6470. doi: 10.1109/TWC.2015.2455494 [8] LI Mingyu, ZHAO Xiaohui, LIANG Hui, et al. Deep reinforcement learning optimal transmission policy for communication systems with energy harvesting and adaptive MQAM[J]. IEEE Transactions on Vehicular Technology, 2019, 68(6): 5782–5793. doi: 10.1109/TVT.2019.2911544 [9] QIU Chengrun, HU Yang, CHEN Yan, et al. Lyapunov optimization for energy harvesting wireless sensor communications[J]. IEEE Internet of Things Journal, 2018, 5(3): 1947–1956. doi: 10.1109/JIOT.2018.2817590 [10] 雷维嘉, 孙嘉琳, 谢显中, 等. 能量收集通信系统中功率和调制方式的在线联合优化策略[J]. 电子与信息学报, 2022, 44(3): 1024–1033. doi: 10.11999/JEIT210145LEI Weijia, SUN Jialin, XIE Xianzhong, et al. Online joint optimization of power and modulation in energy harvesting communication systems[J]. Journal of Electronics &Information Technology, 2022, 44(3): 1024–1033. doi: 10.11999/JEIT210145 [11] 王新梅, 肖国镇. 纠错码-原理与方法(修订版)[M]. 2版. 西安: 西安电子科技大学出版社, 2001: 73–174.WANG Xinmei and XIAO Guozhen. Error Correcting Code. Principle and Method (Revised Edition)[M]. 2nd ed. Xi’an: Xidian University Publishing House, 2001: 73–174. [12] KANG S M and LEBLEBICI Y. CMOS Digital Integrated Circuits Analysis & Design[M]. 3rd ed. London: McGraw-Hill Education, 2002: 452–460. [13] SHAVIV D and ÖZGÜR A. Universally near optimal online power control for energy harvesting nodes[J]. IEEE Journal on Selected Areas in Communications, 2016, 34(12): 3620–3631. doi: 10.1109/JSAC.2016.2612039 [14] DENG Feng, YUE Xianghu, FAN Xinyu, et al. Multisource energy harvesting system for a wireless sensor network Node in the field environment[J]. IEEE Internet of Things Journal, 2019, 6(1): 918–927. doi: 10.1109/JIOT.2018.2865431 [15] ZHANG Qiufang, HE Jinghan, XU Yin, et al. Average-value modeling of direct-driven PMSG-based wind energy conversion systems[J]. IEEE Transactions on Energy Conversion, 2022, 37(1): 264–273. doi: 10.1109/TEC.2021.3095486 期刊类型引用(21)
1. 李民,郭琳,姚雄. 优化高斯过程回归在太阳能集热效率预测上的应用. 电网与清洁能源. 2023(08): 127-131+138 . 百度学术
2. Han-shan Li. Recognition model and algorithm of projectiles by combining particle swarm optimization support vector and spatial-temporal constrain. Defence Technology. 2023(09): 273-283 . 必应学术
3. 何旭,席佩瑶,辛云宏. 基于代价敏感思想和自适应增强集成的SVM多分类算法. 微型电脑应用. 2023(09): 1-3 . 百度学术
4. 徐红先,张书玮. 基于极限学习机及多姿态信息融合的步态识别. 机械. 2023(11): 72-80 . 百度学术
5. 陈晓禾,曹旭刚,陈健生,胡春华,马羽. 基于三维卷积的帕金森患者拖步识别. 电子与信息学报. 2021(12): 3467-3475 . 本站查看
6. 雷建超,刘栋博,房玉,庄祖江,刘俊豪. 基于表面肌电信号的性别差异性手势识别. 中国医学物理学杂志. 2020(03): 337-341 . 百度学术
7. 金鑫,冯毅,尤雪汐,王佳欣. 基于机器学习的信息安全设备调配保障技术研究. 电子科技. 2020(08): 80-86 . 百度学术
8. 孟明,闫冉,高云园,佘青山. 基于多元变分模态分解的脑电多域特征提取方法. 传感技术学报. 2020(06): 853-860 . 百度学术
9. 王志芳,王书涛,王贵川. 粒子群优化BP神经网络在甲烷检测中的应用. 光子学报. 2019(04): 147-154 . 百度学术
10. 邹倩颖,王小芳. 粒子群优化BP神经网络在步态识别中的研究. 实验技术与管理. 2019(08): 130-133+138 . 百度学术
11. 郭海山,高波涌,陆慧娟. 基于Boruta-PSO-SVM的股票收益率研究. 传感器与微系统. 2018(03): 51-53+57 . 百度学术
12. 周长林,钱志升,王勤民,余道杰,程俊平. 基于PSO-SVM方法的电源线传导泄漏信号识别与还原. 电子与信息学报. 2018(09): 2206-2211 . 本站查看
13. 赵荣建,汤敏芳,陈贤祥,杜利东,曾华林,赵湛,方震. 基于光纤传感的生理参数监测系统研究. 电子与信息学报. 2018(09): 2182-2189 . 本站查看
14. 胡长俊,袁树杰. 煤矿井下WSN中基于自适应粒子群聚类算法的多sink节点部署. 计算机科学. 2018(11): 103-107+123 . 百度学术
15. 王秀娟,相从斌. 基于累积量的DoS攻击检测算法. 北京工业大学学报. 2017(09): 1328-1334 . 百度学术
16. 杜必强,孙立江. 基于PSO-SVM模型的焊接转子环焊缝超声缺陷识别. 动力工程学报. 2017(05): 379-385 . 百度学术
17. 赵湛,韩璐,方震,陈贤祥,杜利东,刘正奎. 基于可穿戴设备的日常压力状态评估研究. 电子与信息学报. 2017(11): 2669-2676 . 本站查看
18. 董广宇. 基于多特征融合的复杂路况步态识别方法. 科学技术与工程. 2017(08): 202-207 . 百度学术
19. 韩笑,佘青山,高云园,罗志增. 基于NA-MEMD和互信息的脑电特征提取方法. 传感技术学报. 2016(08): 1140-1148 . 百度学术
20. 黄成泉,王士同,蒋亦樟,董爱美. v-软间隔罗杰斯特回归分类机. 电子与信息学报. 2016(04): 985-992 . 本站查看
21. 徐超立,林科,杨晨,吴超华,高小榕. 基于小腿表面肌电的智能机器人协同控制方法. 中国生物医学工程学报. 2016(04): 385-393 . 百度学术
其他类型引用(43)
-