高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

数字孪生电网的特性、架构及应用综述

王鑫 王霖 余芸 敖知琪 孙凌云

王鑫, 王霖, 余芸, 敖知琪, 孙凌云. 数字孪生电网的特性、架构及应用综述[J]. 电子与信息学报, 2022, 44(11): 3721-3733. doi: 10.11999/JEIT220629
引用本文: 王鑫, 王霖, 余芸, 敖知琪, 孙凌云. 数字孪生电网的特性、架构及应用综述[J]. 电子与信息学报, 2022, 44(11): 3721-3733. doi: 10.11999/JEIT220629
WANG Xin, WANG Lin, YU Yun, AO Zhiqi, SUN Lingyun. Survey on Characteristics, Architecture and Applications of Digital Twin Power Grid[J]. Journal of Electronics & Information Technology, 2022, 44(11): 3721-3733. doi: 10.11999/JEIT220629
Citation: WANG Xin, WANG Lin, YU Yun, AO Zhiqi, SUN Lingyun. Survey on Characteristics, Architecture and Applications of Digital Twin Power Grid[J]. Journal of Electronics & Information Technology, 2022, 44(11): 3721-3733. doi: 10.11999/JEIT220629

数字孪生电网的特性、架构及应用综述

doi: 10.11999/JEIT220629
基金项目: 国家重点研发计划 (2020YFB0906000, 2020YFB0906004)
详细信息
    作者简介:

    王鑫:男,副教授,硕士生导师,研究方向为数字孪生、智能电网、联邦学习等

    王霖:男,硕士生,研究方向为数字孪生、智能电网、联邦学习等

    余芸:女,硕士,副高级工程师,研究方向为数字电网信息系统软件架构

    敖知琪:女,硕士,工程师,研究方向为数字电网信息系统软件架构

    孙凌云:男,博士,教授,博士生导师,研究方向为人工智能、设计智能、信息与交互设计

    通讯作者:

    王鑫 xinw@zjut.edu.cn

  • 中图分类号: TN915; TP399; TM73

Survey on Characteristics, Architecture and Applications of Digital Twin Power Grid

Funds: The National Key Research and Development Program of China (2020YFB0906000, 2020YFB0906004)
  • 摘要: 数字孪生电网旨在利用新兴的数字孪生技术帮助电网企业构建物理电网的数字孪生体。该文总结了数字孪生电网的3大特性:数据知识混合驱动、实时双向交互、虚实相融共生。讨论了规范化孪生电网项目的评价标准。回顾了数字孪生电网的典型架构设计,基于数字孪生5维模型提出了包含物理电网、孪生数据、孪生电网、孪生应用4层结构的通用性参考架构。归纳了孪生电网在系统分析、状态评估、数据预测、健康维护、仿真建模等方面的应用,探讨了孪生电网未来向孪生能源互联网、智慧能源系统等演进的意义和价值;最后从数据管理、模型构建、可视化、信息物理安全、标准确立、生态建设6个角度总结了数字孪生电网的挑战性问题。
  • 图  1  综述核心脉络图

    图  2  数字孪生电网4层架构

    图  3  数字孪生综合能源系统概念图

    图  4  解决可视化交互挑战性问题的两个维度

    表  1  数字孪生电网4层架构的相关文献统计

    层 级文 献
    物理电网层文献[21, 23-28]
    孪生数据层文献[11,21,29]
    孪生电网层文献[9,30-33]
    孪生应用层文献[21]
    下载: 导出CSV

    表  2  数字孪生电网的相关应用场景分类统计

    应用场景文 献
    电力系统分析文献[34-37]
    状态评估文献[38-40]
    电力数据预测文献[33,41,42]
    电网健康维护文献[17,43-48]
    仿真建模文献[16,17,49-53]
    下载: 导出CSV
  • [1] 中国南方电网有限责任公司. 数字电网白皮书[R]. 广州: 中国南方电网有限责任公司, 2020.

    China Southern Power Grid Co. , Ltd. Digital power grid white paper[R]. Guangzhou, China: China Southern Power Grid Co. Ltd, 2020.
    [2] 李鹏, 习伟, 蔡田田, 等. 数字电网的理念、架构与关键技术[J]. 中国电机工程学报, 2022, 42(14): 5002–5017. doi: 10.13334/j.0258-8013.pcsee.212086

    LI Peng, XI Wei, CAI Tiantian, et al. Concept, architecture and key technologies of digital power grids[J]. Proceedings of the CSEE, 2022, 42(14): 5002–5017. doi: 10.13334/j.0258-8013.pcsee.212086
    [3] 国家电网公司. 构建以新能源为主体的新型电力系统行动方案(2021-2030年)[R]. 北京: 国家电网公司, 2021.

    State Grid Corporation of China. Action plan for building a new power system with new energy as the main body (2021-2030)[R]. Beijing, China: State Grid Corporation of China, 2021.
    [4] 中国南方电网有限责任公司. 数字化转型和数字南网建设行动方案(2019年版)[R]. 广州: 中国南方电网有限责任公司, 2019.

    China Southern Power Grid Co. , Ltd. Action plan for digital transformation and digital south network construction (2019 edition)[R]. Guangzhou, China: China Southern Power Grid Co. Ltd. , 2019.
    [5] 刘大同, 郭凯, 王本宽, 等. 数字孪生技术综述与展望[J]. 仪器仪表学报, 2018, 39(11): 1–10. doi: 10.19650/j.cnki.cjsi.J1804099

    LIU Datong, GUO Kai, WANG Benkuan, et al. Summary and perspective survey on digital twin technology[J]. Chinese Journal of Scientific Instrument, 2018, 39(11): 1–10. doi: 10.19650/j.cnki.cjsi.J1804099
    [6] 陶飞, 刘蔚然, 刘检华, 等. 数字孪生及其应用探索[J]. 计算机集成制造系统, 2018, 24(1): 1–18. doi: 10.13196/j.cims.2018.01.001

    TAO Fei, LIU Weiran, LIU Jianhua, et al. Digital twin and its potential application exploration[J]. Computer Integrated Manufacturing Systems, 2018, 24(1): 1–18. doi: 10.13196/j.cims.2018.01.001
    [7] GRIEVES M W. Product lifecycle management: the new paradigm for enterprises[J]. International Journal of Product Development, 2005, 2(1/2): 71–84. doi: 10.1504/ijpd.2005.006669
    [8] 中国电子技术标准化研究院, 树根互联技术有限公司. 数字孪生应用白皮书[R/OL]. http://www.cesi.cn/images/editor/20201118/20201118163619265.pdf, 2022.

    China Electronics Standardization Institute, Rootcloud Technology Co. , Ltd. White paper on digital twin application[R/OL]. http://www.cesi.cn/images/editor/20201118/20201118163619265.pdf, 2022.
    [9] 相晨萌, 曾四鸣, 闫鹏, 等. 数字孪生技术在电网运行中的典型应用与展望[J]. 高电压技术, 2021, 47(5): 1564–1575. doi: 10.13336/j.1003-6520.hve.20201838

    XIANG Chenmeng, ZENG Siming, YAN Peng, et al. Typical application and prospect of digital twin technology in power grid operation[J]. High Voltage Engineering, 2021, 47(5): 1564–1575. doi: 10.13336/j.1003-6520.hve.20201838
    [10] 沈沉, 曹仟妮, 贾孟硕, 等. 电力系统数字孪生的概念、特点及应用展望[J]. 中国电机工程学报, 2022, 42(2): 487–498. doi: 10.13334/j.0258-8013.pcsee.211594

    SHEN Chen, CAO Qianni, JIA Mengshuo, et al. Concepts, characteristics and prospects of application of digital twin in power system[J]. Proceedings of the CSEE, 2022, 42(2): 487–498. doi: 10.13334/j.0258-8013.pcsee.211594
    [11] 白浩, 周长城, 袁智勇, 等. 基于数字孪生的数字电网展望和思考[J]. 南方电网技术, 2020, 14(8): 18–24,40. doi: 10.13648/j.cnki.issn1674-0629.2020.08.003

    BAI Hao, ZHOU Changcheng, YUAN Zhiyong, et al. Prospect and thinking of digital power grid based on digital twin[J]. Southern Power System Technology, 2020, 14(8): 18–24,40. doi: 10.13648/j.cnki.issn1674-0629.2020.08.003
    [12] 贺兴, 艾芊, 朱天怡, 等. 数字孪生在电力系统应用中的机遇和挑战[J]. 电网技术, 2020, 44(6): 2009–2019. doi: 10.13335/j.1000-3673.pst.2019.1983

    HE Xing, AI Qian, ZHU Tianyi, et al. Opportunities and challenges of the digital twin in power system applications[J]. Power System Technology, 2020, 44(6): 2009–2019. doi: 10.13335/j.1000-3673.pst.2019.1983
    [13] 李峰, 王琦, 胡健雄, 等. 数据与知识联合驱动方法研究进展及其在电力系统中应用展望[J]. 中国电机工程学报, 2021, 41(13): 4377–4389. doi: 10.13334/j.0258-8013.pcsee.202468

    LI Feng, WANG Qi, HU Jianxiong, et al. Combined data-driven and knowledge-driven methodology research advances and its applied prospect in power systems[J]. Proceedings of the CSEE, 2021, 41(13): 4377–4389. doi: 10.13334/j.0258-8013.pcsee.202468
    [14] 王力成, 邓宝华, 黄刚, 等. 知识-数据混合驱动的电网频率协同控制算法[J]. 中国电机工程学报, 待出版

    2022-03-29). doi: 10.13334/j. 0258-8013. pcsee. 212350. WANG Licheng, DENG Baohua, HUANG Gang, et al. Coordinated system frequency control with a hybrid knowledge-data driven algorithm[J]. Proceedings of the CSEE, To be published.
    [15] 吴滨源, 李建文, 李永刚, 等. 基于知识和数据联合驱动的并网逆变器多工况阻抗获取方法[J]. 电力系统自动化, 2022, 46(6): 83–91. doi: 10.7500/AEPS20210605001

    WU Binyuan, LI Jianwen, LI Yonggang, et al. Combined data-knowledge-driven impedance acquisition method for grid-connected inverter under multiple operation conditions[J]. Automation of Electric Power Systems, 2022, 46(6): 83–91. doi: 10.7500/AEPS20210605001
    [16] LIU Tao, YU Haibo, YIN Hongling, et al. Research and application of digital twin technology in power grid development business[C]. 2021 6th Asia Conference on Power and Electrical Engineering (ACPEE), Chongqing, China, 2021: 383-387.
    [17] 房方, 姚贵山, 胡阳, 等. 风力发电机组数字孪生系统[J]. 中国科学:技术科学, 2022, 52(10): 1582–1594. doi: 10.1360/SST-2021-0076

    FANG Fang, YAO Guishan, HU Yang, et al. Digital twin system of a wind turbine[J]. Scientia Sinica:Technologica, 2022, 52(10): 1582–1594. doi: 10.1360/SST-2021-0076
    [18] 安世亚太科技股份有限公司数字孪生体实验室. 数字孪生体技术白皮书(2019年12月)[R]. 北京: 安世亚太科技股份有限公司, 数字孪生体实验室, 2019.

    PERA Global, Digital Twin Lab. Digital twin technology white paper(2019. 12. ). [R]. Beijing, China: PERA Global, Digital Twin Lab, 2019.
    [19] GRIEVES M and VICKERS J. Digital twin: Mitigating unpredictable, undesirable emergent behavior in complex systems[M]//KAHLEN J, FLUMERFELT S, and ALVES A. Transdisciplinary Perspectives on Complex Systems. Cham: Springer, 2017: 85-113.
    [20] 陶飞, 刘蔚然, 张萌, 等. 数字孪生五维模型及十大领域应用[J]. 计算机集成制造系统, 2019, 25(1): 1–18. doi: 10.13196/j.cims.2019.01.001

    TAO Fei, LIU Weiran, ZHANG Meng, et al. Five-dimension digital twin model and its ten applications[J]. Computer Integrated Manufacturing Systems, 2019, 25(1): 1–18. doi: 10.13196/j.cims.2019.01.001
    [21] 杨帆, 吴涛, 廖瑞金, 等. 数字孪生在电力装备领域中的应用与实现方法[J]. 高电压技术, 2021, 47(5): 1505–1521. doi: 10.13336/j.1003-6520.hve.20210456

    YANG Fan, WU Tao, LIAO Ruijin, et al. Application and implementation method of digital twin in electric equipment[J]. High Voltage Engineering, 2021, 47(5): 1505–1521. doi: 10.13336/j.1003-6520.hve.20210456
    [22] 严兴煜, 高赐威, 陈涛, 等. 数字孪生虚拟电厂系统框架设计及其实践展望[J]. 中国电机工程学报, 待发表.

    YAN Xingyu, GAO Ciwei, CHEN Tao, et al. Framework design and application prospect for digital twin virtual power plant system[J]. Proceedings of the CSEE, To be published.
    [23] 张鋆, 张明皓, 仝杰, 等. 用于电力资产在线感知的eRFID标签设计[J]. 电工技术学报, 2020, 35(11): 2296–2305. doi: 10.19595/j.cnki.1000-6753.tces.191241

    ZHANG Jun, ZHANG Minghao, TONG Jie, et al. A eRFID tag design for online perception of power assets[J]. Transactions of China Electrotechnical Society, 2020, 35(11): 2296–2305. doi: 10.19595/j.cnki.1000-6753.tces.191241
    [24] 李鹏, 毕建刚, 于浩, 等. 变电设备智能传感与状态感知技术及应用[J]. 高电压技术, 2020, 46(9): 3097–3113. doi: 10.13336/j.1003-6520.hve.20200939

    LI Peng, BI Jiangang, YU Hao, et al. Technology and application of intelligent sensing and state sensing for transformation equipment[J]. High Voltage Engineering, 2020, 46(9): 3097–3113. doi: 10.13336/j.1003-6520.hve.20200939
    [25] 周峰, 周晖, 刁赢龙. 泛在电力物联网智能感知关键技术发展思路[J]. 中国电机工程学报, 2020, 40(1): 70–82. doi: 10.13334/j.0258-8013.pcsee.191198

    ZHOU Feng, ZHOU Hui, and DIAO Yinglong. Development of intelligent perception key technology in the ubiquitous internet of things in electricity[J]. Proceedings of the CSEE, 2020, 40(1): 70–82. doi: 10.13334/j.0258-8013.pcsee.191198
    [26] 蔡月明, 封士永, 杜红卫, 等. 面向泛在电力物联网的边缘节点感知自适应数据处理方法[J]. 高电压技术, 2019, 45(6): 1715–1722. doi: 10.13336/j.1003-6520.hve.20190604005

    CAI Yueming, FENG Shiyong, DU Hongwei, et al. Novel edge-ware adaptive data processing method for the ubiquitous electric power internet of things[J]. High Voltage Engineering, 2019, 45(6): 1715–1722. doi: 10.13336/j.1003-6520.hve.20190604005
    [27] 邱雪松, 蔺艳斐, 邵苏杰, 等. 一种面向智能电网数据采集的传感器聚合布局构造算法[J]. 电子与信息学报, 2015, 37(10): 2411–2417. doi: 10.11999/JEIT150231

    QIU Xuesong, LIN Yanfei, SHAO Sujie, et al. Sensor aggregation distribution construction algorithm for smart grid data collection system[J]. Journal of Electronics &Information Technology, 2015, 37(10): 2411–2417. doi: 10.11999/JEIT150231
    [28] 丰雷, 谢坤宜, 朱亮, 等. 面向电网业务质量保障的5G高可靠低时延通信资源调度方法[J]. 电子与信息学报, 2021, 43(12): 3418–3426. doi: 10.11999/JEIT210509

    FENG Lei, XIE Kunyi, ZHU Liang, et al. 5G ultra-reliable and low latency communication resource scheduling for power business quality assurance[J]. Journal of Electronics &Information Technology, 2021, 43(12): 3418–3426. doi: 10.11999/JEIT210509
    [29] 王红霞, 王波, 董旭柱, 等. 面向多源电力感知终端的异构多参量特征级融合: 融合模式、融合框架与场景验证[J]. 电工技术学报, 2021, 36(7): 1313–1323. doi: 10.19595/j.cnki.1000-6753.tces.201094

    WANG Hongxia, WANG Bo, DONG Xuzhu, et al. Heterogeneous multi-parameter feature-level fusion for multi-source power sensing terminals: Fusion mode, fusion framework and application scenarios[J]. Transactions of China Electrotechnical Society, 2021, 36(7): 1313–1323. doi: 10.19595/j.cnki.1000-6753.tces.201094
    [30] 陈新和, 裴玮, 邓卫, 等. 数据驱动的虚拟电厂调度特性封装方法[J]. 中国电机工程学报, 2021, 41(14): 4816–4828. doi: 10.13334/j.0258-8013.pcsee.200105

    CHEN Xinhe, PEI Wei, DENG Wei, et al. Data-driven virtual power plant dispatching characteristic packing method[J]. Proceedings of the CSEE, 2021, 41(14): 4816–4828. doi: 10.13334/j.0258-8013.pcsee.200105
    [31] 宁家鑫, 刘羽霄, 章家维, 等. 数据驱动的三相配电网络拓扑与线路参数辨识[J]. 中国电机工程学报, 2021, 41(8): 2615–2627. doi: 10.13334/j.0258-8013.pcsee.201520

    NING Jiaxin, LIU Yuxiao, ZHANG Jiawei, et al. Data-driven topology and line parameter identification of three-phase distribution grid[J]. Proceedings of the CSEE, 2021, 41(8): 2615–2627. doi: 10.13334/j.0258-8013.pcsee.201520
    [32] 杨斌, 杜文娟, 王海风. 数据驱动下的虚拟同步发电机等效建模[J]. 电网技术, 2020, 44(1): 35–43. doi: 10.13335/j.1000-3673.pst.2019.0245

    YANG Bin, DU Wenjuan, and WANG Haifeng. Equivalent modeling of virtual synchronous generator based on data-driven method[J]. Power System Technology, 2020, 44(1): 35–43. doi: 10.13335/j.1000-3673.pst.2019.0245
    [33] 史凯钰, 张东霞, 韩肖清, 等. 基于LSTM与迁移学习的光伏发电功率预测数字孪生模型[J]. 电网技术, 2022, 46(4): 1363–1371. doi: 10.13335/j.1000-3673.pst.2021.0738

    SHI Kaiyu, ZHANG Dongxia, HAN Xiaoqing, et al. Digital twin model of photovoltaic power generation prediction based on LSTM and transfer learning[J]. Power System Technology, 2022, 46(4): 1363–1371. doi: 10.13335/j.1000-3673.pst.2021.0738
    [34] ZHOU Mike, YAN Jianfeng, and FENG Donghao. Digital twin framework and its application to power grid online analysis[J]. CSEE Journal of Power and Energy Systems, 2019, 5(3): 391–398. doi: 10.17775/CSEEJPES.2018.01460
    [35] BROSINSKY C, WESTERMANN D, and KREBS R. Recent and prospective developments in power system control centers: Adapting the digital twin technology for application in power system control centers[C]. 2018 IEEE International Energy Conference (ENERGYCON), Limassol, Cyprus, 2018: 1-6.
    [36] BROSINSKY C, SONG Xinya, and WESTERMANN D. Digital twin-concept of a continuously adaptive power system mirror[C]. International ETG-Congress 2019; ETG Symposium, Esslingen, Germany, 2019: 1-6.
    [37] 周二专, 冯东豪, 严剑峰, 等. 秒级响应电网在线分析软件平台[J]. 电网技术, 2020, 44(9): 3474–3480. doi: 10.13335/j.1000-3673.pst.2020.0083

    ZHOU Mike, FENG Donghao, YAN Jianfeng, et al. A software platform for second-order responsiveness power grid online analysis[J]. Power System Technology, 2020, 44(9): 3474–3480. doi: 10.13335/j.1000-3673.pst.2020.0083
    [38] SONG Xinya, CAI Hui, KIRCHEIS J, et al. Application of digital twin assistant-system in state estimation for inverter dominated grid[C]. 2020 55th International Universities Power Engineering Conference (UPEC), Turin, Italy, 2020: 1-6.
    [39] ZHOU Peng, LI Jinxing, GAO Tianlu, et al. Research on mining of transmission grid assets of heterogeneous system based on digital twin[C]. 2020 IEEE 4th Conference on Energy Internet and Energy System Integration (EI2), Wuhan, China, 3051-3056.
    [40] YANG Yong, CHEN Zhu, YAN Jing, et al. State evaluation of power transformer based on digital twin[C]. 2019 IEEE International Conference on Service Operations and Logistics, and Informatics (SOLI), Zhengzhou, China, 2019: 230-235.
    [41] 孙荣富, 王隆扬, 王玉林, 等. 基于数字孪生的光伏发电功率超短期预测[J]. 电网技术, 2021, 45(4): 1258–1264. doi: 10.13335/j.1000-3673.pst.2020.0711

    SUN Rongfu, WANG Longyang, WANG Yulin, et al. Ultra-short-term prediction of photovoltaic power generation based on digital twins[J]. Power System Technology, 2021, 45(4): 1258–1264. doi: 10.13335/j.1000-3673.pst.2020.0711
    [42] 刘宇凝, 王迎丽, 徐明文, 等. 基于数字孪生混合储能的风电功率波动平抑策略[J]. 电网技术, 2021, 45(7): 2503–2513. doi: 10.13335/j.1000-3673.pst.2021.0188

    LIU Yuning, WANG Yingli, XU Mingwen, et al. Wind power fluctuation smooth strategy based on digital twin hybrid energy storage[J]. Power System Technology, 2021, 45(7): 2503–2513. doi: 10.13335/j.1000-3673.pst.2021.0188
    [43] 张立静, 盛戈皞, 侯慧娟, 等. 基于电热特性融合分析的油浸式变压器匝间短路故障辨识方法[J]. 电网技术, 2021, 45(7): 2473–2482. doi: 10.13335/j.1000-3673.pst.2020.2054

    ZHANG Lijing, SHENG Gehao, HOU Huijuan, et al. Detection method of interturn short-circuit faults in oil-immersed transformers based on fusion analysis of electrothermal characteristic[J]. Power System Technology, 2021, 45(7): 2473–2482. doi: 10.13335/j.1000-3673.pst.2020.2054
    [44] 刘皓璐, 邵建伟, 王雪, 等. 基于数字孪生的配电自动化终端设备状态评价与故障预判[J]. 电网技术, 2022, 46(4): 1605–1613. doi: 10.13335/j.1000-3673.pst.2021.0661

    LIU Haolu, SHAO Jianwei, WANG Xue, et al. State evaluation and fault prediction of distribution automation terminal equipment based on digital twins[J]. Power System Technology, 2022, 46(4): 1605–1613. doi: 10.13335/j.1000-3673.pst.2021.0661
    [45] JAIN P, POON J, SINGH J P, et al. A digital twin approach for fault diagnosis in distributed photovoltaic systems[J]. IEEE Transactions on Power Electronics, 2020, 35(1): 940–956. doi: 10.1109/TPEL.2019.2911594
    [46] WÖRMANN J, URBAN M, GRUBINGER D, et al. Neural network and correlation based earth-fault localization utilizing a digital twin of a medium-voltage grid[C]. Proceedings of the Twelfth ACM International Conference on Future Energy Systems, Virtual Event, Italy, 2021: 249-253.
    [47] 江秀臣, 许永鹏, 李曜丞, 等. 新型电力系统背景下的输变电数字化转型[J]. 高电压技术, 2022, 48(1): 1–10. doi: 10.13336/j.1003-6520.hve.20211649

    JIANG Xiuchen, XU Yongpeng, LI Yaocheng, et al. Digitalization transformation of power transmission and transformation under the back-ground of new power system[J]. High Voltage Engineering, 2022, 48(1): 1–10. doi: 10.13336/j.1003-6520.hve.20211649
    [48] 李猛, 聂铭, 和敬涵, 等. 基于数字孪生的柔性直流电网纵联保护原理[J]. 中国电机工程学报, 2022, 42(5): 1773–1782. doi: 10.13334/j.0258-8013.pcsee.202045

    LI Meng, NIE Ming, HE Jinghan, et al. Pilot protection of flexible DC grid based on digital twin[J]. Proceedings of the CSEE, 2022, 42(5): 1773–1782. doi: 10.13334/j.0258-8013.pcsee.202045
    [49] 王运达, 张钢, 于泓, 等. 基于数字孪生的城轨供电系统高保真建模方法[J]. 高电压技术, 2021, 47(5): 1576–1583. doi: 10.13336/j.1003-6520.hve.20201794

    WANG Yunda, ZHANG Gang, YU Hong, et al. High fidelity modeling method of urban rail power supply system based on digital twin[J]. High Voltage Engineering, 2021, 47(5): 1576–1583. doi: 10.13336/j.1003-6520.hve.20201794
    [50] 袁涛, 唐瑭, 司马文霞, 等. 融合实测数据的配网断路器投切暂态过电压建模方法[J]. 高电压技术, 2021, 47(5): 1555–1563. doi: 10.13336/j.1003-6520.hve.20201859

    YUAN Tao, TANG Tang, SIMA Wenxia, et al. Switching transient overvoltage modeling method for circuit breaker in distribution networks based on measured data[J]. High Voltage Engineering, 2021, 47(5): 1555–1563. doi: 10.13336/j.1003-6520.hve.20201859
    [51] 杨再欣, 陶军, 尹柏清, 等. 基于DIgSILENT的机网协调控制及动模验证[J]. 电力系统保护与控制, 2021, 49(20): 180–187. doi: 10.19783/j.cnki.pspc.200430

    YANG Zaixin, TAO Jun, YIN Baiqing, et al. Generator and power grid coordination control and dynamic test based on DIgSILENT[J]. Power System Protection and Control, 2021, 49(20): 180–187. doi: 10.19783/j.cnki.pspc.200430
    [52] EBRAHIMI A. Challenges of developing a digital twin model of renewable energy generators[C]. 2019 IEEE 28th International Symposium on Industrial Electronics (ISIE), Vancouver, Canada, 2019: 1059-1066.
    [53] 王浩, 许海伟, 杜勇, 等. 基于数字孪生模型的GIS筒体关键部件温变行为研究[J]. 高电压技术, 2021, 47(5): 1584–1594. doi: 10.13336/j.1003-6520.hve.20201405

    WANG Hao, XU Haiwei, DU Yong, et al. Research on temperature change behavior of key components of GIS barrel based on digital twin model[J]. High Voltage Engineering, 2021, 47(5): 1584–1594. doi: 10.13336/j.1003-6520.hve.20201405
    [54] 赵鹏, 蒲天骄, 王新迎, 等. 面向能源互联网数字孪生的电力物联网关键技术及展望[J]. 中国电机工程学报, 2022, 42(2): 447–457. doi: 10.13334/j.0258-8013.pcsee.211977

    ZHAO Peng, PU Tianjiao, WANG Xinying, et al. Key technologies and perspectives of power internet of things facing with digital twins of the energy internet[J]. Proceedings of the CSEE, 2022, 42(2): 447–457. doi: 10.13334/j.0258-8013.pcsee.211977
    [55] 蒲天骄, 陈盛, 赵琦, 等. 能源互联网数字孪生系统框架设计及应用展望[J]. 中国电机工程学报, 2021, 41(6): 2012–2028. doi: 10.13334/j.0258-8013.pcsee.201757

    PU Tianjiao, CHEN Sheng, ZHAO Qi, et al. Framework design and application prospect for digital twins system of energy internet[J]. Proceedings of the CSEE, 2021, 41(6): 2012–2028. doi: 10.13334/j.0258-8013.pcsee.201757
    [56] 沈沉, 贾孟硕, 陈颖, 等. 能源互联网数字孪生及其应用[J]. 全球能源互联网, 2020, 3(1): 1–13. doi: 10.19705/j.cnki.issn2096-5125.2020.01.001

    SHEN Chen, JIA Mengshuo, CHEN Ying, et al. Digital twin of the energy internet and its application[J]. Journal of Global Energy Interconnection, 2020, 3(1): 1–13. doi: 10.19705/j.cnki.issn2096-5125.2020.01.001
    [57] 王成山, 董博, 于浩, 等. 智慧城市综合能源系统数字孪生技术及应用[J]. 中国电机工程学报, 2021, 41(5): 1597–1607. doi: 10.13334/j.0258-8013.pcsee.201804

    WANG Chengshan, DONG Bo, YU Hao, et al. Digital twin technology and its application in the integrated energy system of smart city[J]. Proceedings of the CSEE, 2021, 41(5): 1597–1607. doi: 10.13334/j.0258-8013.pcsee.201804
    [58] 唐文虎, 陈星宇, 钱瞳, 等. 面向智慧能源系统的数字孪生技术及其应用[J]. 中国工程科学, 2020, 22(4): 74–85. doi: 10.15302/J-SSCAE-2020.04.010

    TANG Wenhu, CHEN Xingyu, QIAN Tong, et al. Technologies and applications of digital twin for developing smart energy systems[J]. Strategic Study of CAE, 2020, 22(4): 74–85. doi: 10.15302/J-SSCAE-2020.04.010
    [59] 李建华. 能源关键基础设施网络安全威胁与防御技术综述[J]. 电子与信息学报, 2020, 42(9): 2065–2081. doi: 10.11999/JEIT191055

    LI Jianhua. Overview of cyber security threats and defense technologies for energy critical infrastructure[J]. Journal of Electronics &Information Technology, 2020, 42(9): 2065–2081. doi: 10.11999/JEIT191055
    [60] 齐波, 张鹏, 张书琦, 等. 数字孪生技术在输变电设备状态评估中的应用现状与发展展望[J]. 高电压技术, 2021, 47(5): 1522–1538. doi: 10.13336/j.1003-6520.hve.20210093

    QI Bo, ZHANG Peng, ZHANG Shuqi, et al. Application status and development prospects of digital twin technology in condition assessment of power transmission and transformation equipment[J]. High Voltage Engineering, 2021, 47(5): 1522–1538. doi: 10.13336/j.1003-6520.hve.20210093
    [61] 工业4.0研究院. 数字孪生电网白皮书——电力企业数字化转型之道[R/OL]. http://www.innovation4.cn/library/r53857, 2022.

    China Academy of Industrie 4 0. Digital twin grid white paper[R/OL]. http://www.innovation4.cn/library/r53857, 2022.
    [62] 陶飞, 马昕, 胡天亮, 等. 数字孪生标准体系[J]. 计算机集成制造系统, 2019, 25(10): 2405–2418. doi: 10.13196/j.cims.2019.10.001

    TAO Fei, MA Xin, HU Tianliang, et al. Research on digital twin standard system[J]. Computer Integrated Manufacturing Systems, 2019, 25(10): 2405–2418. doi: 10.13196/j.cims.2019.10.001
  • 加载中
图(4) / 表(2)
计量
  • 文章访问数:  1672
  • HTML全文浏览量:  1426
  • PDF下载量:  531
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-05-17
  • 修回日期:  2022-08-19
  • 网络出版日期:  2022-09-02
  • 刊出日期:  2022-11-14

目录

    /

    返回文章
    返回