High Energy Efficient Perfect Gaussian Integer Sequence Design Based on Second Order Cyclotomic Classes
-
摘要: 完备高斯整数序列(PGIS)因其良好的抗干扰性、高传输率和频谱利用率,如今已被广泛应用于码分复用(CDM)系统和正交频分复用(OFDM)系统。该文将高斯整数序列(GIS)分解成实部序列和虚部序列,再通过对实部序列和虚部序列2阶分圆构造出2阶和3阶的PGIS,并提出一种新的将奇数长PGIS扩展成偶数长PGIS的方法,该文构造出的多数PGIS能量效率高于95%,扩大了扩频通信系统的地址选择空间,对于工程实践具有重要意义。Abstract: Perfect Gaussian Integer Sequence (PGIS) has been widely used in Code Division Multiplexing (CDM) systems and Orthogonal Frequency Division Multiplexing (OFDM) systems because of its good anti-interference, high transmission rate and high frequency spectrum utilization. In this paper, Gaussian Integer Sequence (GIS) is decomposed into real part sequence and imaginary part sequence, and then second-order and third-order PGIS are constructed by second-order cyclotomy of real part sequence and imaginary part sequence. A new method of extending odd length PGIS to even length PGIS is proposed. The energy efficiency of most PGIS constructed in this paper is higher than 95%, and expands the address selection space of spread spectrum communication system, which is of great significance to engineering practice.
-
表 1 PGIS的能量效率比较
文献 定理 长度 电平数 能量效率(%) 构造实例 文献[6] 定理1 13 3 50.3 例2 定理1 19 3 70.8 例1 文献[7] 定理4 19 3 70.8 例1 定理5 19 2 68.4 例3 文献[11] 定理1 19 2 91.3 表1(行6) 19 3 80.4 表1(行7) 19 3 90.0 表1(行8) 本文 定理1 13 3 98.3 $\begin{gathered} (19,{\text{ } } - 8 - {\rm{j} }20,{\text{ } } - 8 + {\rm{j} }20,{\text{ } } - 8 - {\rm{j} }20,{\text{ } } - 8 - {\rm{j} }20,{\text{ } } - 8 + {\rm{j} }20,{\text{ } } - 8 + {\rm{j} }20,{\text{ } } \\ - 8 + {\rm{j} }20,{\text{ } } - 8 + {\rm{j} }20,{\text{ } } - 8 - {\rm{j} }20,{\text{ } } - 8 - {\rm{j} }20,{\text{ } } - 8 + {\rm{j} }20,{\text{ } } - 8 - {\rm{j} }20) \\ \end{gathered}$ 19 2 99.2 $\begin{gathered} (9 + {\rm{j} }11,{\text{ } }9 + {\rm{j} }11,{\text{ } } - 13 - {\rm{j} }6,{\text{ } } - 13 - {\rm{j} }6,{\text{ } }9 + {\rm{j} }11,{\text{ } }9 + {\rm{j} }11,{\text{ } }9 + {\rm{j} }11,{\text{ } } \\ 9 + {\rm{j} }11,{\text{ } } - 13 - {\rm{j} }6,{\text{ } }9 + {\rm{j} }11,{\text{ } } - 13 - {\rm{j} }6,{\text{ } }9 + {\rm{j} }11,{\text{ } } - 13 - {\rm{j} }6,{\text{ } } - 13 - {\rm{j} }6,{\text{ } } \\ - 13 - {\rm{j} }6,{\text{ } } - 13 - {\rm{j} }6,{\text{ } }9 + {\rm{j} }11,{\text{ } }9 + {\rm{j} }11,{\text{ } } - 13 - {\rm{j} }6) \\ \end{gathered}$ 19 2 99.2 $\begin{gathered} ( - 20 - {\rm{j} }2,{\text{ } }19 - {\rm{j} }7,{\text{ } } - 20 - {\rm{j} }2,{\text{ } } - 20 - {\rm{j} }2,{\text{ } }19 - {\rm{j} }7,{\text{ } }19 - {\rm{j} }7,{\text{ } }19 - {\rm{j} }7,{\text{ } } \\ 19 - {\rm{j} }7,{\text{ } } - 20 - {\rm{j} }2,{\text{ } }19 - {\rm{j} }7,{\text{ } } - 20 - {\rm{j} }2,{\text{ } }19 - {\rm{j} }7,{\text{ } } - 20 - {\rm{j} }2,{\text{ } } - 20 - {\rm{j} }2, \\ - 20 - {\rm{j} }2,{\text{ } } - 20 - {\rm{j} }2,{\text{ } }19 - {\rm{j} }7,{\text{ } }19 - {\rm{j} }7,{\text{ } } - 20 - {\rm{j} }2) \\ \end{gathered}$ 19 2 99.6 $\begin{gathered} ( - 18 - {\rm{j} }2,{\text{ } } - 18 - {\rm{j} }2,{\text{ } }17 - {\rm{j} }6,{\text{ } }17 - {\rm{j} }6,{\text{ } } - 18 - {\rm{j} }2,{\text{ } } - 18 - {\rm{j} }2,{\text{ } } - 18 - {\rm{j} }2,{\text{ } } \\ - 18 - {\rm{j} }2,{\text{ } }17 - {\rm{j} }6,{\text{ } } - 18 - {\rm{j} }2,{\text{ } }17 - {\rm{j} }6,{\text{ } } - 18 - {\rm{j} }2,{\text{ } }17 - {\rm{j} }6,{\text{ } }17 - {\rm{j} }6, \\ 17 - {\rm{j} }6,{\text{ } }17 - {\rm{j} }6,{\text{ } } - 18 - {\rm{j} }2,{\text{ } } - 18 - {\rm{j} }2,{\text{ } }17 - {\rm{j} }6) \\ \end{gathered}$ 表 2 PGIS扩展前后的能量效率比较
长度 能量效率(%) 实例 原序列 3 99.9 $(4 - {\rm{j} }15,11 + {\rm{j} }11,11 + {\rm{j} }11)$ $a = 1,b = - 1$ 6 99.9 $( - 19 - {\rm{j} }11,22,{\rm{j} }22, - 11 + {\rm{j} }19,{\rm{j} }22,22)$ $a = 2,b = 2$ 6 99.9 $(38 + {\rm{j} }22,44, - {\rm{j} }44{\rm{j} }, - 22 + {\rm{j} }38, - {\rm{j} }44,44)$ -
[1] PEI S C and CHANG Kuowei. Arbitrary length reducible and irreducible perfect Gaussian integer sequences with a pre-given Gaussian integer[C]. 2020 28th European Signal Processing Conference, Amsterdam, Netherlands, 2020: 2274–2278. [2] LIU Kai and NI Jia. Construction of Gaussian integer periodic complementary sequence set with zero correlation zone[J]. Journal of Physics:Conference Series, 2020, 1828: 012177. doi: 10.1088/1742-6596/1828/1/012177 [3] 刘凯, 倪佳. 基于循环差集的最佳高斯整数序列构造[J]. 电子学报, 2021, 49(8): 1474–1479. doi: 10.12263/DZXB.20200239LIU Kai and NI Jia. Construction of perfect Gaussian integer sequences based on cyclic difference sets[J]. Acta Electronica Sinica, 2021, 49(8): 1474–1479. doi: 10.12263/DZXB.20200239 [4] CHANG C Y, LI Ying, and HIRATA J. New 64-QAM Golay complementary sequences[J]. IEEE Transactions on Information Theory, 2010, 56(5): 2479–2485. doi: 10.1109/TIT.2010.2043871 [5] LI C P, WANG S H, and WANG C L. Novel low-complexity SLM schemes for PAPR reduction in OFDM systems[J]. IEEE Transactions on Signal Processing, 2010, 58(5): 2916–2921. doi: 10.1109/TSP.2010.2043142 [6] LEE C D and CHEN Y H. Fast generation of perfect Gaussian integer sequences of primitive length[C]. 2019 IEEE 4th International Conference on Signal and Image Processing, Wuxi, China, 2019: 588–591. [7] HSIA C H, LOU S J, CHANG H H, et al. Novel hybrid public/private key cryptography based on perfect Gaussian integer sequences[J]. IEEE Access, 2021, 9: 145045–145059. doi: 10.1109/ACCESS.2021.3121252 [8] LIU Kai, LIU Yuandong, and CHANG Zebin. Construction of perfect gaussian integer sequences with high energy efficiency based on difference sets[C]. The 7th International Conference on Computer and Communications, Chengdu, China, 2021: 1475–1479. [9] YANG Yang, TANG Xiaohu, and ZHOU Zhengchun. Perfect Gaussian integer sequences of odd prime length[J]. IEEE Signal Processing Letters, 2012, 19(10): 615–618. doi: 10.1109/LSP.2012.2209642 [10] CHANG H S, LI C P, LEE C D, et al. Perfect Gaussian integer sequences of arbitrary composite length[J]. IEEE Transactions on Information Theory, 2015, 61(7): 4107–4115. doi: 10.1109/TIT.2015.2438828 [11] 刘凯, 马国斌, 陈盼盼. 基于分圆类的完备高斯整数序列构造[J]. 电子学报, 2019, 47(4): 806–811. doi: 10.3969/J.ISSN.0372-2112.2019.04.006LIU Kai, MA Guobin, and CHEN Panpan. Construction of perfect gaussian integer sequences based on cyclotomic classes[J]. Acta Electronica Sinica, 2019, 47(4): 806–811. doi: 10.3969/J.ISSN.0372-2112.2019.04.006 [12] 沈灏. 组合设计理论[M]. 上海: 上海交通大学出版社, 1996: 127–159.SHEN Hao. Theory of Combination Designs[M]. Shanghai: Shanghai Jiao Tong University Press, 1996: 127–159. [13] HU Weiwen, WANG S H, and LI C P. Gaussian integer sequences with ideal periodic autocorrelation functions[J]. IEEE Transactions on Signal Processing, 2012, 60(11): 6074–6079. doi: 10.1109/TSP.2012.2210550 [14] ZENG Fanxin, HE Xiping, XUAN Guixin, et al. Perfect Gaussian integer sequences embedding pre-given Gaussian integers[J]. IEEE Signal Processing Letters, 2019, 26(8): 1122–1126. doi: 10.1109/LSP.2019.2921228 [15] STORER T. Cyclotomy and Difference Sets[M]. Chicago: Markham Publishes Company, 1967: 25–83.
表(2)
计量
- 文章访问数: 421
- HTML全文浏览量: 153
- PDF下载量: 122
- 被引次数: 0