高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于二阶分圆类的高能量效率完备高斯整数序列设计

赵伟 黄雷 贾彦国 沈秀敏

赵伟, 黄雷, 贾彦国, 沈秀敏. 基于二阶分圆类的高能量效率完备高斯整数序列设计[J]. 电子与信息学报, 2023, 45(6): 1952-1958. doi: 10.11999/JEIT220591
引用本文: 赵伟, 黄雷, 贾彦国, 沈秀敏. 基于二阶分圆类的高能量效率完备高斯整数序列设计[J]. 电子与信息学报, 2023, 45(6): 1952-1958. doi: 10.11999/JEIT220591
ZHAO Wei, HUANG Lei, JIA Yanguo, SHEN Xiumin. High Energy Efficient Perfect Gaussian Integer Sequence Design Based on Second Order Cyclotomic Classes[J]. Journal of Electronics & Information Technology, 2023, 45(6): 1952-1958. doi: 10.11999/JEIT220591
Citation: ZHAO Wei, HUANG Lei, JIA Yanguo, SHEN Xiumin. High Energy Efficient Perfect Gaussian Integer Sequence Design Based on Second Order Cyclotomic Classes[J]. Journal of Electronics & Information Technology, 2023, 45(6): 1952-1958. doi: 10.11999/JEIT220591

基于二阶分圆类的高能量效率完备高斯整数序列设计

doi: 10.11999/JEIT220591
基金项目: 国家自然科学基金(61601401),河北省自然科学基金(F2018203057, F2020203043),河北省高等学校科学技术研究项目(QN2021144),河北省创新能力提升计划项目(22567626H)
详细信息
    作者简介:

    赵伟:男,博士生,研究方向为差集偶、二进制序列偶

    黄雷:男,硕士生,研究方向为编码理论、密码学

    贾彦国:男,教授,博士生导师,研究方向为编码理论、智能补货、量子计算

    沈秀敏:女,讲师,硕士生导师,研究方向为编码理论、序列设计

    通讯作者:

    贾彦国 jyg@ysu.edu.cn

  • 中图分类号: TN911.23

High Energy Efficient Perfect Gaussian Integer Sequence Design Based on Second Order Cyclotomic Classes

Funds: The National Natural Science Foundation of China (61601401), The Natural Science Foundation of Hebei Province (F2018203057, F2020203043), The Research Project for Science and Technology in Higher Education of Hebei (QN2021144), The Innovation Capability Improvement Plan Project of Hebei Province (22567626H)
  • 摘要: 完备高斯整数序列(PGIS)因其良好的抗干扰性、高传输率和频谱利用率,如今已被广泛应用于码分复用(CDM)系统和正交频分复用(OFDM)系统。该文将高斯整数序列(GIS)分解成实部序列和虚部序列,再通过对实部序列和虚部序列2阶分圆构造出2阶和3阶的PGIS,并提出一种新的将奇数长PGIS扩展成偶数长PGIS的方法,该文构造出的多数PGIS能量效率高于95%,扩大了扩频通信系统的地址选择空间,对于工程实践具有重要意义。
  • 表  1  PGIS的能量效率比较

    文献定理长度电平数能量效率(%)构造实例
    文献[6]定理113350.3例2
    定理119370.8例1
    文献[7]定理419370.8例1
    定理519268.4例3
    文献[11]定理119291.3表1(行6)
    19380.4表1(行7)
    19390.0表1(行8)
    本文定理113398.3$\begin{gathered} (19,{\text{ } } - 8 - {\rm{j} }20,{\text{ } } - 8 + {\rm{j} }20,{\text{ } } - 8 - {\rm{j} }20,{\text{ } } - 8 - {\rm{j} }20,{\text{ } } - 8 + {\rm{j} }20,{\text{ } } - 8 + {\rm{j} }20,{\text{ } } \\ - 8 + {\rm{j} }20,{\text{ } } - 8 + {\rm{j} }20,{\text{ } } - 8 - {\rm{j} }20,{\text{ } } - 8 - {\rm{j} }20,{\text{ } } - 8 + {\rm{j} }20,{\text{ } } - 8 - {\rm{j} }20) \\ \end{gathered}$
    19299.2$\begin{gathered} (9 + {\rm{j} }11,{\text{ } }9 + {\rm{j} }11,{\text{ } } - 13 - {\rm{j} }6,{\text{ } } - 13 - {\rm{j} }6,{\text{ } }9 + {\rm{j} }11,{\text{ } }9 + {\rm{j} }11,{\text{ } }9 + {\rm{j} }11,{\text{ } } \\ 9 + {\rm{j} }11,{\text{ } } - 13 - {\rm{j} }6,{\text{ } }9 + {\rm{j} }11,{\text{ } } - 13 - {\rm{j} }6,{\text{ } }9 + {\rm{j} }11,{\text{ } } - 13 - {\rm{j} }6,{\text{ } } - 13 - {\rm{j} }6,{\text{ } } \\ - 13 - {\rm{j} }6,{\text{ } } - 13 - {\rm{j} }6,{\text{ } }9 + {\rm{j} }11,{\text{ } }9 + {\rm{j} }11,{\text{ } } - 13 - {\rm{j} }6) \\ \end{gathered}$
    19299.2$\begin{gathered} ( - 20 - {\rm{j} }2,{\text{ } }19 - {\rm{j} }7,{\text{ } } - 20 - {\rm{j} }2,{\text{ } } - 20 - {\rm{j} }2,{\text{ } }19 - {\rm{j} }7,{\text{ } }19 - {\rm{j} }7,{\text{ } }19 - {\rm{j} }7,{\text{ } } \\ 19 - {\rm{j} }7,{\text{ } } - 20 - {\rm{j} }2,{\text{ } }19 - {\rm{j} }7,{\text{ } } - 20 - {\rm{j} }2,{\text{ } }19 - {\rm{j} }7,{\text{ } } - 20 - {\rm{j} }2,{\text{ } } - 20 - {\rm{j} }2, \\ - 20 - {\rm{j} }2,{\text{ } } - 20 - {\rm{j} }2,{\text{ } }19 - {\rm{j} }7,{\text{ } }19 - {\rm{j} }7,{\text{ } } - 20 - {\rm{j} }2) \\ \end{gathered}$
    19299.6$\begin{gathered} ( - 18 - {\rm{j} }2,{\text{ } } - 18 - {\rm{j} }2,{\text{ } }17 - {\rm{j} }6,{\text{ } }17 - {\rm{j} }6,{\text{ } } - 18 - {\rm{j} }2,{\text{ } } - 18 - {\rm{j} }2,{\text{ } } - 18 - {\rm{j} }2,{\text{ } } \\ - 18 - {\rm{j} }2,{\text{ } }17 - {\rm{j} }6,{\text{ } } - 18 - {\rm{j} }2,{\text{ } }17 - {\rm{j} }6,{\text{ } } - 18 - {\rm{j} }2,{\text{ } }17 - {\rm{j} }6,{\text{ } }17 - {\rm{j} }6, \\ 17 - {\rm{j} }6,{\text{ } }17 - {\rm{j} }6,{\text{ } } - 18 - {\rm{j} }2,{\text{ } } - 18 - {\rm{j} }2,{\text{ } }17 - {\rm{j} }6) \\ \end{gathered}$
    下载: 导出CSV

    表  2  PGIS扩展前后的能量效率比较

    长度能量效率(%)实例
    原序列399.9$(4 - {\rm{j} }15,11 + {\rm{j} }11,11 + {\rm{j} }11)$
    $a = 1,b = - 1$699.9$( - 19 - {\rm{j} }11,22,{\rm{j} }22, - 11 + {\rm{j} }19,{\rm{j} }22,22)$
    $a = 2,b = 2$699.9$(38 + {\rm{j} }22,44, - {\rm{j} }44{\rm{j} }, - 22 + {\rm{j} }38, - {\rm{j} }44,44)$
    下载: 导出CSV
  • [1] PEI S C and CHANG Kuowei. Arbitrary length reducible and irreducible perfect Gaussian integer sequences with a pre-given Gaussian integer[C]. 2020 28th European Signal Processing Conference, Amsterdam, Netherlands, 2020: 2274–2278.
    [2] LIU Kai and NI Jia. Construction of Gaussian integer periodic complementary sequence set with zero correlation zone[J]. Journal of Physics:Conference Series, 2020, 1828: 012177. doi: 10.1088/1742-6596/1828/1/012177
    [3] 刘凯, 倪佳. 基于循环差集的最佳高斯整数序列构造[J]. 电子学报, 2021, 49(8): 1474–1479. doi: 10.12263/DZXB.20200239

    LIU Kai and NI Jia. Construction of perfect Gaussian integer sequences based on cyclic difference sets[J]. Acta Electronica Sinica, 2021, 49(8): 1474–1479. doi: 10.12263/DZXB.20200239
    [4] CHANG C Y, LI Ying, and HIRATA J. New 64-QAM Golay complementary sequences[J]. IEEE Transactions on Information Theory, 2010, 56(5): 2479–2485. doi: 10.1109/TIT.2010.2043871
    [5] LI C P, WANG S H, and WANG C L. Novel low-complexity SLM schemes for PAPR reduction in OFDM systems[J]. IEEE Transactions on Signal Processing, 2010, 58(5): 2916–2921. doi: 10.1109/TSP.2010.2043142
    [6] LEE C D and CHEN Y H. Fast generation of perfect Gaussian integer sequences of primitive length[C]. 2019 IEEE 4th International Conference on Signal and Image Processing, Wuxi, China, 2019: 588–591.
    [7] HSIA C H, LOU S J, CHANG H H, et al. Novel hybrid public/private key cryptography based on perfect Gaussian integer sequences[J]. IEEE Access, 2021, 9: 145045–145059. doi: 10.1109/ACCESS.2021.3121252
    [8] LIU Kai, LIU Yuandong, and CHANG Zebin. Construction of perfect gaussian integer sequences with high energy efficiency based on difference sets[C]. The 7th International Conference on Computer and Communications, Chengdu, China, 2021: 1475–1479.
    [9] YANG Yang, TANG Xiaohu, and ZHOU Zhengchun. Perfect Gaussian integer sequences of odd prime length[J]. IEEE Signal Processing Letters, 2012, 19(10): 615–618. doi: 10.1109/LSP.2012.2209642
    [10] CHANG H S, LI C P, LEE C D, et al. Perfect Gaussian integer sequences of arbitrary composite length[J]. IEEE Transactions on Information Theory, 2015, 61(7): 4107–4115. doi: 10.1109/TIT.2015.2438828
    [11] 刘凯, 马国斌, 陈盼盼. 基于分圆类的完备高斯整数序列构造[J]. 电子学报, 2019, 47(4): 806–811. doi: 10.3969/J.ISSN.0372-2112.2019.04.006

    LIU Kai, MA Guobin, and CHEN Panpan. Construction of perfect gaussian integer sequences based on cyclotomic classes[J]. Acta Electronica Sinica, 2019, 47(4): 806–811. doi: 10.3969/J.ISSN.0372-2112.2019.04.006
    [12] 沈灏. 组合设计理论[M]. 上海: 上海交通大学出版社, 1996: 127–159.

    SHEN Hao. Theory of Combination Designs[M]. Shanghai: Shanghai Jiao Tong University Press, 1996: 127–159.
    [13] HU Weiwen, WANG S H, and LI C P. Gaussian integer sequences with ideal periodic autocorrelation functions[J]. IEEE Transactions on Signal Processing, 2012, 60(11): 6074–6079. doi: 10.1109/TSP.2012.2210550
    [14] ZENG Fanxin, HE Xiping, XUAN Guixin, et al. Perfect Gaussian integer sequences embedding pre-given Gaussian integers[J]. IEEE Signal Processing Letters, 2019, 26(8): 1122–1126. doi: 10.1109/LSP.2019.2921228
    [15] STORER T. Cyclotomy and Difference Sets[M]. Chicago: Markham Publishes Company, 1967: 25–83.
  • 加载中
表(2)
计量
  • 文章访问数:  421
  • HTML全文浏览量:  153
  • PDF下载量:  122
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-05-10
  • 修回日期:  2022-06-22
  • 网络出版日期:  2022-06-25
  • 刊出日期:  2023-06-10

目录

    /

    返回文章
    返回