高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

去蜂窝大规模多输入多输出非正交多址系统中基于量子菌群优化的接入点选择方案

李飞 闫志伟 李汀 宋云超 耿晨雨

李飞, 闫志伟, 李汀, 宋云超, 耿晨雨. 去蜂窝大规模多输入多输出非正交多址系统中基于量子菌群优化的接入点选择方案[J]. 电子与信息学报, 2023, 45(6): 2016-2023. doi: 10.11999/JEIT220573
引用本文: 李飞, 闫志伟, 李汀, 宋云超, 耿晨雨. 去蜂窝大规模多输入多输出非正交多址系统中基于量子菌群优化的接入点选择方案[J]. 电子与信息学报, 2023, 45(6): 2016-2023. doi: 10.11999/JEIT220573
LI Fei, YAN Zhiwei, LI Ting, SONG Yunchao, GENG Chenyu. Access Point Selection in Cell-Free Massive Multiple-Input Multiple-Output Non-Orthogonal Multiple Access System Based on Quantum Bacterial Foraging Optimization[J]. Journal of Electronics & Information Technology, 2023, 45(6): 2016-2023. doi: 10.11999/JEIT220573
Citation: LI Fei, YAN Zhiwei, LI Ting, SONG Yunchao, GENG Chenyu. Access Point Selection in Cell-Free Massive Multiple-Input Multiple-Output Non-Orthogonal Multiple Access System Based on Quantum Bacterial Foraging Optimization[J]. Journal of Electronics & Information Technology, 2023, 45(6): 2016-2023. doi: 10.11999/JEIT220573

去蜂窝大规模多输入多输出非正交多址系统中基于量子菌群优化的接入点选择方案

doi: 10.11999/JEIT220573
基金项目: 国家自然科学基金(61871238)
详细信息
    作者简介:

    李飞:女,教授,研究方向为量子智能计算、无线通信、互联网网络信息处理

    闫志伟:男,硕士生,研究方向为去蜂窝大规模MIMO技术

    李汀:男,副教授,研究方向为大规模MIMO技术、基于人工智能的无线通信技术

    宋云超:男,讲师,研究方向为无线通信信号处理、机器学习

    耿晨雨:女,硕士生,研究方向为去蜂窝大规模MIMO技术

    通讯作者:

    李汀 lit@njupt.edu.cn

  • 中图分类号: TN929.5

Access Point Selection in Cell-Free Massive Multiple-Input Multiple-Output Non-Orthogonal Multiple Access System Based on Quantum Bacterial Foraging Optimization

Funds: The National Natural Science Foundation of China (61871238)
  • 摘要: 去蜂窝大规模多输入多输出非正交多址(MIMO-NOMA)系统的接入点(AP)选择,对有效降低系统的回程链路开销、提高用户的下行可达速率影响较大。该文针对AP选择的去蜂窝大规模MIMO-NOMA系统下行链路建立了用户平均速率的表达式;在此基础上,提出了基于量子菌群优化(QBFO)的AP选择方案,将AP与用户的连接关系以量子比特的形式编码,利用自适应量子旋转门模拟细菌趋化,实现细菌位置更新,通过对量子细菌种群进行测量,获得AP与用户的选择解集,并引入驱散操作避免算法陷入局部最优。实验结果表明,所提方案能够在降低回程链路开销的同时显著提高用户的下行平均速率,相较于基于接收功率和基于信道估计均方误差的AP选择方案,该文所提方案在降低用户间干扰、提高系统总吞吐量方面表现更优。
  • 图  1  去蜂窝大规模MIMO-NOMA系统模型

    图  2  环绕仿真区域

    图  3  用户下行平均速率累积分布

    图  4  完全SIC与不完全SIC下用户下行平均速率与AP数量的关系曲线

    图  5  簇内用户数不同时用户下行平均速率累积分布

    图  6  不同AP天线数下用户下行平均速率与用户数量的关系曲线

    表  1  仿真参数

    参数参数值
    阴影衰落标准差$ {\sigma _{{\text{sh}}}} $(dB)8
    噪声系数(dB)9
    信道相干时间${\tau _c}$200
    系统带宽$W$(MHz)20
    导频功率$ {\bar p_{\text{p}}} $(mW)100
    下行发射功率$ {\bar p_{\text{d}}} $(mW)200
    下载: 导出CSV

    表  2  不同方案下的用户-AP连接数比率

    AP选择方案全连接基于接收功率[8]信道估计均方误差[10]所提方案
    用户选择AP数/总连接($ M \cdot {K_{{\text{tot}}}} $)10.40.50.89
    下载: 导出CSV
  • [1] LI Yikai and BADUGE G A A. NOMA-aided cell-free massive MIMO systems[J]. IEEE Wireless Communications Letters, 2018, 7(6): 950–953. doi: 10.1109/LWC.2018.2841375
    [2] NGUYEN T K, NGUYEN H H, and TUAN H D. Max-min QoS power control in generalized cell-free massive MIMO-NOMA with optimal backhaul combining[J]. IEEE Transactions on Vehicular Technology, 2020, 69(10): 10949–10964. doi: 10.1109/TVT.2020.3006054
    [3] OHASHI A A, DA COSTA D B, FERNANDES A L P, et al. Cell-free massive MIMO-NOMA systems with imperfect SIC and non-reciprocal channels[J]. IEEE Wireless Communications Letters, 2021, 10(6): 1329–1333. doi: 10.1109/LWC.2021.3066042
    [4] KUSALADHARMA S, ZHU Weiping, AJIB W, et al. Achievable rate characterization of NOMA-aided cell-free massive MIMO with imperfect successive interference cancellation[J]. IEEE Transactions on Communications, 2021, 69(5): 3054–3066. doi: 10.1109/TCOMM.2021.3053613
    [5] ZHANG Yao, CAO Haotong, ZHOU Meng, et al. Non-orthogonal multiple access in cell-free massive MIMO networks[J]. China Communications, 2020, 17(8): 81–94. doi: 10.23919/JCC.2020.08.007
    [6] LE Q N, NGUYEN V D, DOBRE O A, et al. Learning-assisted user clustering in cell-free massive MIMO-NOMA networks[J]. IEEE Transactions on Vehicular Technology, 2021, 70(12): 12872–12887. doi: 10.1109/TVT.2021.3121217
    [7] BUZZI S and D’ANDREA C. Cell-free massive MIMO: User-centric approach[J]. IEEE Wireless Communications Letters, 2017, 6(6): 706–709. doi: 10.1109/LWC.2017.2734893
    [8] NGO H Q, TRAN L N, DUONG T Q, et al. On the total energy efficiency of cell-free massive MIMO[J]. IEEE Transactions on Green Communications and Networking, 2018, 2(1): 25–39. doi: 10.1109/TGCN.2017.2770215
    [9] BJÖRNSON E and SANGUINETTI L. Scalable cell-free massive MIMO systems[J]. IEEE Transactions on Communications, 2020, 68(7): 4247–4261. doi: 10.1109/TCOMM.2020.2987311
    [10] WANG Rui, SHEN Min, HE Yun, et al. Performance of cell-free massive MIMO with joint user clustering and access point selection[J]. IEEE Access, 2021, 9: 40860–40870. doi: 10.1109/ACCESS.2021.3056051
    [11] DAO H T and KIM S. Power allocation and user-AP connection in distributed massive MIMO systems[J]. IEEE Communications Letters, 2021, 25(2): 565–569. doi: 10.1109/LCOMM.2020.3036086
    [12] DAO H T and KIM S. Effective channel gain-based access point selection in cell-free massive MIMO systems[J]. IEEE Access, 2020, 8: 108127–108132. doi: 10.1109/ACCESS.2020.3001270
    [13] LI Fei, ZHANG Yuting, WU Jiulong, et al. Quantum bacterial foraging optimization algorithm[C]. 2014 IEEE Congress on Evolutionary Computation (CEC), Beijing, China, 2014: 1265–1272.
    [14] LI Fei, JI Wei, TAN Sijia, et al. Quantum bacterial foraging optimization: From theory to MIMO system designs[J]. IEEE Open Journal of the Communications Society, 2020, 1: 1632–1646. doi: 10.1109/OJCOMS.2020.3031449
    [15] NGO H Q, ASHIKHMIN A, YANG Hong, et al. Cell-free massive MIMO versus small cells[J]. IEEE Transactions on Wireless Communications, 2017, 16(3): 1834–1850. doi: 10.1109/TWC.2017.2655515
  • 加载中
图(6) / 表(2)
计量
  • 文章访问数:  523
  • HTML全文浏览量:  225
  • PDF下载量:  77
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-05-09
  • 修回日期:  2022-06-19
  • 网络出版日期:  2022-06-24
  • 刊出日期:  2023-06-10

目录

    /

    返回文章
    返回