高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于傅里叶系数实部的脉冲流信号欠Nyquist采样方法

云双星 徐红伟 付宁 乔立岩

云双星, 徐红伟, 付宁, 乔立岩. 基于傅里叶系数实部的脉冲流信号欠Nyquist采样方法[J]. 电子与信息学报, 2023, 45(6): 2153-2161. doi: 10.11999/JEIT220558
引用本文: 云双星, 徐红伟, 付宁, 乔立岩. 基于傅里叶系数实部的脉冲流信号欠Nyquist采样方法[J]. 电子与信息学报, 2023, 45(6): 2153-2161. doi: 10.11999/JEIT220558
YUN Shuangxing, XU Hongwei, FU Ning, QIAO Liyan. Sub-Nyquist Sampling of Pulse Streams Based on the Real Part of Fourier Coefficients[J]. Journal of Electronics & Information Technology, 2023, 45(6): 2153-2161. doi: 10.11999/JEIT220558
Citation: YUN Shuangxing, XU Hongwei, FU Ning, QIAO Liyan. Sub-Nyquist Sampling of Pulse Streams Based on the Real Part of Fourier Coefficients[J]. Journal of Electronics & Information Technology, 2023, 45(6): 2153-2161. doi: 10.11999/JEIT220558

基于傅里叶系数实部的脉冲流信号欠Nyquist采样方法

doi: 10.11999/JEIT220558
基金项目: 国家自然科学基金(62071149, 61671177),鸿鹊创新中心开放基金(HQ202103003),中央高校基本科研业务费专项资金
详细信息
    作者简介:

    云双星:男,博士生,研究方向为有限新息率采样理论、欠奈奎斯特采样等

    徐红伟:男,博士后,研究方向为自动驾驶数据采集、FPGA硬件加速计算等

    付宁:男,教授,博士生导师,研究方向为信息域采样理论及技术、稀疏信号处理及压缩感知、智能信号处理、虚拟仪器技术、自动测试技术等

    乔立岩:男,教授,博士生导师,研究方向为数据采集技术、大容量数据记录技术和测试信息处理等

    通讯作者:

    付宁 funinghit@163.com

  • 中图分类号: TN911.71

Sub-Nyquist Sampling of Pulse Streams Based on the Real Part of Fourier Coefficients

Funds: The National Natural Science Foundation of China (62071149, 61671177), The Open Foundation of Hongque Innovation Center (HQ202103003), Fundamental Research Funds for the Central Universities
  • 摘要: 有限新息率(FRI)采样理论可以远低于信号Nyquist频率的采样速率实现对脉冲流信号的欠采样。经典的FRI重构算法大多基于傅里叶系数进行运算,其中存在大量的对复数矩阵的奇异值分解,降低了算法的执行效率。针对该问题,该文提出基于傅里叶系数实部的脉冲流信号FRI采样及重构方法。首先利用离散余弦变换从脉冲流信号的低速采样值中获取其傅里叶系数实部信息,并在重构算法中使用实部的Toeplitz矩阵以提高奇异值分解(SVD)的效率;其次,为了提升经典的零化滤波器算法的鲁棒性,该文从傅里叶系数实部协方差矩阵的旋转不变特性以及零空间特性出发,提出基于离散余弦变换的协方差矩阵分解算法以及基于离散余弦变换的零空间搜索算法来估计脉冲流信号的特征参数,并针对出现的共轭根问题,提出基于交替方向乘子法的去共轭算法。仿真结果表明:在信号新息率较高的情况下,使用傅里叶系数实部信息会极大提高算法的执行效率,同时保证参数估计的准确性。
  • 图  1  基于sinc采样核的Dirac脉冲流采样结构

    图  2  时间延迟参数重构精度对比

    图  3  3种针对傅里叶系数实部的谱估计算法稳定性比较

    图  4  ESPRIT与CDoD算法的重构精度及运行时间对比

    算法1 时间延迟参数去共轭算法伪代码
     输入:观测矩阵${\boldsymbol{\varPhi}}$,采样值向量${\boldsymbol{c}}$,参数$ \lambda $,$ \rho $;脉冲个数$ K $;算法
     的迭代次数$ {I_{\max }} $;
     输出:$ K $稀疏向量${\boldsymbol{a}}$,其$ K $个最大元素的位置集合$ \Im $。
     (1) 初始化$ {a^0} = c $,$ {u^0} = 0 $且$ {z^0} = 0 $;
     (2) While $ k < {I_{\max }} $ do,
       ${a^{k + 1} } = {({ {\boldsymbol{\varPhi} } ^{\text{T} } } \cdot {\boldsymbol{\varPhi} } + \rho {\boldsymbol{I} })^{ - 1} }({ {\boldsymbol{\varPhi} } ^{\text{T} } } \cdot {\boldsymbol{c}} + \rho ({z^k} - {u^k}))$,
       $ {z^{k + 1}} = {S_{\lambda /\rho }}({a^{k + 1}} + {u^k}) $,
       $ {u^{k + 1}} = {a^{k + 1}} - {z^{k + 1}} + {u^k} $,
       $ k = k + 1 $,
      End While;
     (3) 返回${\boldsymbol{a}}$以及其最大的$ K $个元素构成的集合$ \Im $。
    下载: 导出CSV
    算法2 CDoD算法伪代码
     输入:傅里叶系数实部向量${{\boldsymbol{c}}^{ {\text{DCT} } } }$,脉冲参数$ K $,周期$ \tau $;
     输出:Dirac脉冲幅度参数$ \{ {a_k}\} _{k = 1}^K $,时间延迟参数$ \{ {t_k}\} _{k = 1}^K $。
     (1) 根据式(25)及定理1构建矩阵${ {\boldsymbol{R} }_{\boldsymbol{c} } }$以及$ {\boldsymbol{E}} $, $ {{\boldsymbol{E}}_1} $和$ {{\boldsymbol{E}}_2} $;
     (2) 根据定理1计算矩阵$ {\boldsymbol{W}}{\text{ = }}{\boldsymbol{E}}_1^\dagger \cdot {{\boldsymbol{E}}_2} $的$ 2K $个特征值;
     (3) 根据式(16)求解含有共轭的时间延迟参数$ \{ {\tilde t_r}\} _{r = 1}^{2K} $;
     (4) 根据去共轭算法1以及最小二乘算法计算原始信号的时间延
     迟参数$ \{ {t_k}\} _{k = 1}^K $以及幅度参数$ \{ {a_k}\} _{k = 1}^K $。
    下载: 导出CSV
    算法3 NSoD方法伪代码
     输入:向量${{\boldsymbol{c}}^{ {\text{DCT} } } }$,脉冲参数$ K $,周期$ \tau $,矩阵束参数$ M $;
     输出:脉冲幅度参数$ \{ {a_k}\} _{k = 1}^K $,时间延迟参数$ \{ {t_k}\} _{k = 1}^K $。
     (1) 利用$ {{\boldsymbol{c}}^{{\text{DCT}}}} $构建矩阵${\boldsymbol{C}}$,并通过奇异值分解获取其零空间向量
       $ \{ {v_i}|1 \le i \le M + 1 - 2K\} $;
     (2) 根据定理2构建向量$ {\boldsymbol{e}}(\omega ) $,通过搜索式(35)的伪谱峰值,获得
       信号的时间延迟参数;
     (3) 根据式(16)求解含有共轭的时间延迟参数$ \{ {\tilde t_r}\} _{r = 1}^{2K} $;
     (4) 根据算法1计算信号的参数$ \{ {t_k}\} _{k = 1}^K $以及$ \{ {a_k}\} _{k = 1}^K $。
    下载: 导出CSV
  • [1] UNSER M. Sampling-50 years after Shannon[J]. Proceedings of the IEEE, 2000, 88(4): 569–587. doi: 10.1109/5.843002
    [2] 陈鹏, 孟晨, 王成. 基于高度冗余Gabor框架的欠Nyquist采样系统子空间探测[J]. 电子与信息学报, 2015, 37(12): 2877–2884. doi: 10.11999/JEIT150327

    CHEN Peng, MENG Chen, and WANG Cheng. Subspace detection of sub-Nyquist sampling system based on highly redundant Gabor frames[J]. Journal of Electronics &Information Technology, 2015, 37(12): 2877–2884. doi: 10.11999/JEIT150327
    [3] 张素玲, 席峰, 陈胜垚, 等. 基于正交压缩采样系统的脉冲雷达回波信号实时重构方法[J]. 电子与信息学报, 2016, 38(5): 1064–1071. doi: 10.11999/JEIT150767

    ZHANG Suling, XI Feng, CHEN Shengyao, et al. A real-time reconstruction scheme of pulsed radar echoes with quadrature compressive sampling[J]. Journal of Electronics &Information Technology, 2016, 38(5): 1064–1071. doi: 10.11999/JEIT150767
    [4] QI Peihan, LI Zan, LI Hongbin, et al. Blind sub-Nyquist spectrum sensing with modulated wideband converter[J]. IEEE Transactions on Vehicular Technology, 2018, 67(5): 4278–4288. doi: 10.1109/TVT.2018.2794779
    [5] TUR R, ELDAR Y C, and FRIEDMAN Z. Innovation rate sampling of pulse streams with application to ultrasound imaging[J]. IEEE Transactions on Signal Processing, 2011, 59(4): 1827–1842. doi: 10.1109/TSP.2011.2105480
    [6] TARAR M O and KHALID Z. Reconstruction of finite rate of innovation spherical signals in the presence of noise using deep learning architecture[C]. 28th European Signal Processing Conference (EUSIPCO), Amsterdam, Netherlands, 2021: 1487–1491.
    [7] HUANG Guoxing, YANG Zeming, LU Weidang, et al. Sub-Nyquist sampling of ECG signals based on the extension of variable pulsewidth model[J]. IEEE Transactions on Instrumentation and Measurement, 2022, 71: 6501114. doi: 10.1109/TIM.2022.3144213
    [8] DA COSTA M F and CHI Yuejie. Compressed super-resolution of positive sources[J]. IEEE Signal Processing Letters, 2020, 28: 56–60. doi: 10.1109/LSP.2020.3045343
    [9] HUANG Guoxing, CHEN Linlin, LU Weidang, et al. FRI sampling of parametric signals with non-ideal Sinc kernel[J]. IEEE Transactions on Circuits and Systems II:Express Briefs, 2021, 68(10): 3361–3365. doi: 10.1109/TCSII.2021.3070159
    [10] 王亚军, 李明, 刘高峰. 复杂脉冲序列的有限新息率采样方法[J]. 电子与信息学报, 2013, 35(7): 1606–1611. doi: 10.3724/SP.J.1146.2012.01329

    WANG Yajun, LI Ming, and LIU Gaofeng. Sampling complex pulse streams with finite rate of innovation methods[J]. Journal of Electronics &Information Technology, 2013, 35(7): 1606–1611. doi: 10.3724/SP.J.1146.2012.01329
    [11] VETTERLI M, MARZILIANO P, and BLU T. Sampling signals with finite rate of innovation[J]. IEEE Transactions on Signal Processing, 2002, 50(6): 1417–1428. doi: 10.1109/TSP.2002.1003065
    [12] QIU Tianyu, LIAO Wenjing, HUANG Yihui, et al. An automatic denoising method for NMR spectroscopy based on low-rank Hankel model[J]. IEEE Transactions on Instrumentation and Measurement, 2021, 70: 6010612. doi: 10.1109/TIM.2021.3109743
    [13] SIMEONI M, BESSON A, HURLEY P, et al. CPGD: Cadzow plug-and-play gradient descent for generalised FRI[J]. IEEE Transactions on Signal Processing, 2020, 69: 42–57. doi: 10.1109/TSP.2020.3041089
    [14] GONG Yu, XIAO Shaoqiu, and WANG Bingzhong. Synthesis of sparse planar arrays with multiple patterns by the generalized matrix enhancement and matrix pencil[J]. IEEE Transactions on Antennas and Propagation, 2021, 69(2): 869–881. doi: 10.1109/TAP.2020.3016484
    [15] HU Yonggang, ABHAYAPALA T D, and SAMARASINGHE P N. Multiple source direction of arrival estimations using relative sound pressure based MUSIC[J]. IEEE/ACM Transactions on Audio, Speech, and Language Processing, 2021, 29: 253–264. doi: 10.1109/TASLP.2020.3039569
    [16] LONG Wenxuan, CHEN Rui, MORETTI M, et al. AoA estimation for OAM communication systems with mode-frequency multi-time ESPRIT method[J]. IEEE Transactions on Vehicular Technology, 2021, 70(5): 5094–5098. doi: 10.1109/TVT.2021.3070358
    [17] 王亚军, 李明, 刘高峰. 基于改进指数再生采样核的有限新息率采样系统[J]. 电子与信息学报, 2013, 35(9): 2088–2093. doi: 10.3724/SP.J.1146.2013.00059

    WANG Yajun, LI Ming, and LIU Gaofeng. Finite rate of innovation sampling system based on modified exponential reproducing sampling kernel[J]. Journal of Electronics &Information Technology, 2013, 35(9): 2088–2093. doi: 10.3724/SP.J.1146.2013.00059
    [18] KIM J H, MAMOU J, KOUAMÉ D, et al. Autoregressive model-based reconstruction of quantitative acoustic maps from RF signals sampled at innovation rate[J]. IEEE Transactions on Computational Imaging, 2020, 6: 993–1006. doi: 10.1109/TCI.2020.3000086
    [19] NAAMAN H, MULLETI S, and ELDAR Y C. FRI-TEM: Time encoding sampling of finite-rate-of-innovation signals[J]. IEEE Transactions on Signal Processing, 2022, 70: 2267–2279. doi: 10.1109/TSP.2022.3167146
    [20] MULLETI S and SEELAMANTULA C S. Paley-wiener characterization of kernels for finite-rate-of-innovation sampling[J]. IEEE Transactions on Signal Processing, 2017, 65(22): 5860–5872. doi: 10.1109/TSP.2017.2733484
    [21] NAGESH S, MULLETI S, and SEELAMANTULA C S. On the role of the Hilbert transform in boosting the performance of the annihilating filter[C]. 2014 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Florence, Italy, 2014: 1836–1840.
    [22] BARROS B and JOHNSON B D. Sparse recovery using the discrete cosine transform[J]. The Journal of Geometric Analysis, 2021, 31(9): 8991–8998. doi: 10.1007/s12220-020-00574-0
    [23] FU Ning, HUANG Guoxing, QIAO Liyan, et al. Sub-Nyquist sampling and recovery of pulse streams with the real parts of fourier coefficients[J]. IEEE Access, 2017, 5: 22667–22677. doi: 10.1109/ACCESS.2017.2763421
    [24] CHI Yuejie and DA COSTA M F. Harnessing sparsity over the continuum: atomic norm minimization for superresolution[J]. IEEE Signal Processing Magazine, 2020, 37(2): 39–57. doi: 10.1109/MSP.2019.2962209
    [25] ZHAO Yijiu, HU Yuhen, and WANG Houjun. Enhanced random equivalent sampling based on compressed sensing[J]. IEEE Transactions on Instrumentation and Measurement, 2012, 61(3): 579–586. doi: 10.1109/TIM.2011.2170729
    [26] FISCHER J V, ROMMEL T, and STENS R L. Poisson’s summation formula in radar imaging[C]. 13th European Conference on Synthetic Aperture Radar, Zurich, Switzerland, 2021: 1–6.
    [27] BLU T, DRAGOTTI P L, VETTERLI M, et al. Sparse sampling of signal innovations[J]. IEEE Signal Processing Magazine, 2008, 25(2): 31–40. doi: 10.1109/MSP.2007.914998
    [28] HEREDIA-JUESAS J, MOLAEI A, TIRADO L, et al. Consensus and sectioning-based ADMM with norm-1 regularization for imaging with a compressive reflector antenna[J]. IEEE Transactions on Computational Imaging, 2021, 7: 1189–1204. doi: 10.1109/TCI.2021.3124360
    [29] MECKES M W. On the spectral norm of a random Toeplitz matrix[J]. Electronic Communications in Probability, 2007, 12(2): 315–325. doi: 10.1214/ECP.v12-1313
    [30] WEI Xiaoyao and DRAGOTTI P L. Guaranteed performance in the FRI setting[J]. IEEE Signal Processing Letters, 2015, 22(10): 1661–1665. doi: 10.1109/LSP.2015.2411154
  • 加载中
图(4) / 表(3)
计量
  • 文章访问数:  497
  • HTML全文浏览量:  187
  • PDF下载量:  109
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-05-07
  • 修回日期:  2022-10-20
  • 网络出版日期:  2022-10-26
  • 刊出日期:  2023-06-10

目录

    /

    返回文章
    返回