高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于部分极化转换表面与部分反射表面的宽带高增益圆极化天线设计

程友峰 王迎熹 钟佳丽 廖成

程友峰, 王迎熹, 钟佳丽, 廖成. 基于部分极化转换表面与部分反射表面的宽带高增益圆极化天线设计[J]. 电子与信息学报, 2022, 44(12): 4085-4094. doi: 10.11999/JEIT220539
引用本文: 程友峰, 王迎熹, 钟佳丽, 廖成. 基于部分极化转换表面与部分反射表面的宽带高增益圆极化天线设计[J]. 电子与信息学报, 2022, 44(12): 4085-4094. doi: 10.11999/JEIT220539
CHENG Youfeng, WANG Yingxi, ZHONG Jiali, LIAO Cheng. Design of Wideband High-gain Circularly-polarized Antenna Based on Partially Polarization-conversion Surface and Partially Reflection Surface[J]. Journal of Electronics & Information Technology, 2022, 44(12): 4085-4094. doi: 10.11999/JEIT220539
Citation: CHENG Youfeng, WANG Yingxi, ZHONG Jiali, LIAO Cheng. Design of Wideband High-gain Circularly-polarized Antenna Based on Partially Polarization-conversion Surface and Partially Reflection Surface[J]. Journal of Electronics & Information Technology, 2022, 44(12): 4085-4094. doi: 10.11999/JEIT220539

基于部分极化转换表面与部分反射表面的宽带高增益圆极化天线设计

doi: 10.11999/JEIT220539
基金项目: 国家自然科学基金(61901398),四川省科技厅项目(2021YJ0361)
详细信息
    作者简介:

    程友峰:男,副教授,研究方向为天线原理与设计

    王迎熹:男,硕士生,研究方向为天线原理与设计

    钟佳丽:女,硕士生,研究方向为天线原理与设计

    廖成:男,教授,研究方向为计算电磁学

    通讯作者:

    程友峰 juvencheng@swjtu.edu.cn

  • 中图分类号: TN821

Design of Wideband High-gain Circularly-polarized Antenna Based on Partially Polarization-conversion Surface and Partially Reflection Surface

Funds: The National Natural Science Foundation of China (61901398), The Sichuan Science and Technology Program (2021YJ0361)
  • 摘要: 该文介绍了一种具有部分极化转换与部分反射功能的超表面结构,并将其应用到具有宽带高增益性能的圆极化法布里-珀罗(Fabry-Perot, F-P)谐振腔天线设计中。所设计的超表面在反射地板存在时能够表现出反射型部分极化转换功能从而用于F-P天线的圆极化源设计,而当反射地板被移除时其具有部分反射功能因而能够作为F-P天线的部分反射表面。通过在部分极化转换表面上方放置矩形贴片并加载寄生贴片与部分反射表面,辐射源贴片的线极化辐射能够被转变为高增益圆极化辐射,并且天线的阻抗带宽与轴比带宽均得到加强。所设计的天线经过仿真、加工与测试,测试结果表明其阻抗与轴比带宽分别为6.8~8.4 GHz (21.3%)和6.8~8.3 GHz (19.9%),峰值增益达10.5 dBi。
  • 图  1  部分极化转换表面与部分反射表面的单元结构及其仿真模型

    图  2  部分极化转换表面与部分反射表面的周期结构仿真结果(x极化入射情况)

    图  3  最终天线的结构示意图

    图  4  初始天线的圆极化产生原理示意图

    图  5  初始、改进与最终天线的反射与辐射性能

    图  6  初始与部分反射表面加载天线的xoz平面电场分布

    图  7  F-P腔体高度对于最终天线的反射与辐射性能的影响

    图  8  两种部分反射表面以相同条件加载情况下的性能对比

    图  9  最终天线的加工实物图

    图  10  仿真与测试性能对比

    图  11  仿真与测试的辐射方向图

    图  12  最终天线的xoz平面电场分布

    表  1  部分极化转换表面与部分反射表面的单元结构参数(mm)

    参数数值参数数值参数数值参数数值
    Dc8L16.7L21.8R01.0
    R23.2t3.0Ws0.1R12.4
    下载: 导出CSV

    表  2  所设计的圆极化F-P天线的最终结构参数(mm)

    参数数值参数数值参数数值参数数值参数数值
    D048.0D12.5D22.3Dc8.0Df2.5
    L18.0L25.5L34.0t014.0t13.0
    t20.508t33.0W17.0W25.0W34.0
    下载: 导出CSV

    表  3  所设计及已报道文献中基于线极化源的圆极化F-P天线性能对比

    文献馈源类型极化转换类型阻抗带宽(GHz)轴比带宽(GHz)峰值增益(dBi)口径效率(%)剖面高度
    [21]同轴背馈贴片反射型/完全转换14.75~15.2 (3%)13.8~15.2 (9%)19.113.20.524λ0
    [22]缝隙耦合贴片透射型/部分转换9.78~10.26 (5.7%)9.7~10.35 (6.5%)17.853.30.36λ0
    [28]波导腔辐射器透射型/完全转换9.78~10.26 (4.8%)9.7~10.35 (6.5%)16.548.81.7λ0
    [29]同轴背馈贴片反射型/完全转换12.9~13.8 (6.8%)13.3~14.2 (6.5%)12.428.50.36λ0
    [30]同轴背馈贴片透射型/部分转换10.5~10.78 (2.6%)10.65~10.74 (0.8%)10.211.70.6λ0
    本文同轴背馈贴片反射型/部分转换6.2~8.4 (21.3%)6.8~8.3 (19.9%)10.560.40.51λ0
    *λ0表示的是中心频点的自由空间波长
    下载: 导出CSV
  • [1] 中国科协学会学术部. 中国科协2021重大科学问题、工程技术难题和产业技术问题终选会在北京召开[J]. 科技导报, 2021, 39(14): 9.

    Academic Department of China Association for Science and Technology. The final selection meeting of 2021 major scientific issues, engineering and technical problems and industrial technology issues of China Association for Science and Technology was held in Beijing[J]. Science &Technology Guide, 2021, 39(14): 9.
    [2] 徐常志, 靳一, 李立, 等. 面向6G的星地融合无线传输技术[J]. 电子与信息学报, 2021, 43(1): 28–36. doi: 10.11999/JEIT200363

    XU Changzhi, JIN Yi, LI Li, et al. Wireless transmission technology of satellite-terrestrial integration for 6G mobile communication[J]. Journal of Electronics &Information Technology, 2021, 43(1): 28–36. doi: 10.11999/JEIT200363
    [3] CHEN Shanzhi, SUN Shaohui, and KANG Shaoli. System integration of terrestrial mobile communication and satellite communication —the trends, challenges and key technologies in B5G and 6G[J]. China Communications, 2020, 17(12): 156–171. doi: 10.23919/JCC.2020.12.011
    [4] HOSSEINIAN Mohsen, CHOI J P, CHANG S H, et al. Review of 5G NTN standards development and technical challenges for satellite integration with the 5G network[J]. IEEE Aerospace and Electronic Systems Magazine, 2021, 36(8): 22–31. doi: 10.1109/MAES.2021.3072690
    [5] 张辉, 张晓发, 闫敦豹, 等. 基于H形缝隙耦合的宽带圆极化微带天线[J]. 电子与信息学报, 2007, 29(4): 991–993. doi: 10.3724/SP.J.1146.2005.00710

    ZHANG Hui, ZHANG Xiaofa, YAN Dunbao, et al. Broadband circularly polarized H-shaped aperture-coupled microstrip patch antenna[J]. Journal of Electronics &Information Technology, 2007, 29(4): 991–993. doi: 10.3724/SP.J.1146.2005.00710
    [6] 李振亚, 竺小松, 张建华. 一种新颖的宽带圆极化单极天线[J]. 电子与信息学报, 2018, 40(11): 2705–2711. doi: 10.11999/JEIT180094

    LI Zhenya, ZHU Xiaosong, and ZHANG Jianhua. A novel broadband circularly polarized monopole antenna[J]. Journal of Electronics &Information Technology, 2018, 40(11): 2705–2711. doi: 10.11999/JEIT180094
    [7] NAKAMURA T and FUKUSAKO T. Broadband design of circularly polarized microstrip patch antenna using artificial ground structure with rectangular unit cells[J]. IEEE Transactions on Antennas and Propagation, 2011, 59(6): 2103–2110. doi: 10.1109/TAP.2011.2143656
    [8] MARUYAMA S and FUKUSAKO T. An interpretative study on circularly polarized patch antenna using artificial ground structure[J]. IEEE Transactions on Antennas and Propagation, 2014, 62(11): 5919–5924. doi: 10.1109/TAP.2014.2357431
    [9] NASIMUDDIN N, CHEN Zhining, and QING Xianming. Bandwidth enhancement of a single-feed circularly polarized antenna using a metasurface: Metamaterial-based wideband CP rectangular Microstrip antenna[J]. IEEE Antennas and Propagation Magazine, 2016, 58(2): 39–46. doi: 10.1109/MAP.2016.2520257
    [10] YUE Taiwei, JIANG Zhihao, and WERNER D H. A compact metasurface-enabled dual-band dual-circularly polarized antenna loaded with complementary split ring resonators[J]. IEEE Transactions on Antennas and Propagation, 2019, 67(2): 794–803. doi: 10.1109/TAP.2018.2882616
    [11] WU Zhao, LI Long, LI Yongjiu, et al. Metasurface superstrate antenna with wideband circular polarization for satellite communication application[J]. IEEE Antennas and Wireless Propagation Letters, 2016, 15: 374–377. doi: 10.1109/LAWP.2015.2446505
    [12] LIU Sihao, YANG Deqiang, and PAN Jin. A low-profile circularly polarized metasurface antenna with wide axial-ratio beamwidth[J]. IEEE Antennas and Wireless Propagation Letters, 2019, 18(7): 1438–1442. doi: 10.1109/LAWP.2019.2919533
    [13] JUAN Yue, YANG Wanchen, and CHE Wenquan. Miniaturized low-profile circularly polarized metasurface antenna using capacitive loading[J]. IEEE Transactions on Antennas and Propagation, 2019, 67(5): 3527–3532. doi: 10.1109/TAP.2019.2902735
    [14] LI Ke, LI Long, CAI Yuanming, et al. A novel design of low-profile dual-band circularly polarized antenna with meta-surface[J]. IEEE Antennas and Wireless Propagation Letters, 2015, 14: 1650–1653. doi: 10.1109/lawp.2015.2417169
    [15] TA S X and PARK I. Compact wideband circularly polarized patch antenna array using metasurface[J]. IEEE Antennas and Wireless Propagation Letters, 2017, 16: 1932–1936. doi: 10.1109/LAWP.2017.2689161
    [16] KEDZE K E, WANG H, and PARK I. A metasurface-based wide-bandwidth and high-gain circularly polarized patch antenna[J]. IEEE Transactions on Antennas and Propagation, 2022, 70(1): 732–737. doi: 10.1109/TAP.2021.3098574
    [17] ZHU H L, CHEUNG S W, CHUNG K L, et al. Linear-to-circular polarization conversion using metasurface[J]. IEEE Transactions on Antennas and Propagation, 2013, 61(9): 4615–4623. doi: 10.1109/TAP.2013.2267712
    [18] 刘斌, 谷胜明, 孟明霞, 等. 一种Ka频段高效率圆极化宽角扫描波导缝隙相控阵天线[J]. 电子与信息学报, 2021, 43(6): 1630–1636. doi: 10.11999/JEIT200392

    LIU Bin, GU Shengming, MENG Mingxia, et al. A circularly polarized wide-scan waveguide slot phased array antenna with high efficiency for Ka band application[J]. Journal of Electronics &Information Technology, 2021, 43(6): 1630–1636. doi: 10.11999/JEIT200392
    [19] LI Wenting, GAO S, CAI Yuanming, et al. Polarization-reconfigurable circularly polarized planar antenna using switchable polarizer[J]. IEEE Transactions on Antennas and Propagation, 2017, 65(9): 4470–4477. doi: 10.1109/TAP.2017.2730240
    [20] GAO S, YAHYA R S, HODGES R E, et al. Advanced antennas for small satellites[J]. Proceedings of the IEEE, 2018, 106(3): 391–403. doi: 10.1109/JPROC.2018.2804664
    [21] ORR R, GOUSSETIS G, and FUSCO V. Design method for circularly polarized fabry-perot cavity antennas[J]. IEEE Transactions on Antennas and Propagation, 2014, 62(1): 19–26. doi: 10.1109/TAP.2013.2286839
    [22] XIE Peng, WANG Guangming, LI Haipeng, et al. Circularly polarized fabry-perot antenna employing a receiver–transmitter polarization conversion metasurface[J]. IEEE Transactions on Antennas and Propagation, 2020, 68(4): 3213–3218. doi: 10.1109/TAP.2019.2950811
    [23] CAO Wenquan, LV Xinmeng, WANG Qianqian, et al. Wideband circularly polarized Fabry–Perot resonator antenna in Ku-band[J]. IEEE Antennas and Wireless Propagation Letters, 2019, 18(4): 586–590. doi: 10.1109/LAWP.2019.2896940
    [24] GOUDARZI A, MOVAHHEDI M, HONARI M M, et al. Wideband high-gain circularly polarized resonant cavity antenna with a thin complementary partially reflective surface[J]. IEEE Transactions on Antennas and Propagation, 2021, 69(1): 532–537. doi: 10.1109/TAP.2020.3001443
    [25] 宋锡明. 一种新颖的高增益圆极化背射天线[J]. 电子与信息学报, 1985, 7(6): 473–476.

    SONG Ximing. A circularly polarized backfire antenna with high gain[J]. Journal of Electronics &Information Technology, 1985, 7(6): 473–476.
    [26] CHENG Youfeng, FENG Ju, LIAO Cheng, et al. Analysis and design of wideband low-RCS wide-scan phased array with AMC ground[J]. IEEE Antennas and Wireless Propagation Letters, 2021, 20(2): 209–213. doi: 10.1109/LAWP.2020.3044533
    [27] XIE Yongchao and HE Lianxing. Wide-angle scanning circular polarization phased array based on polarization rotation technology[J]. International Journal of RF and Microwave Computer-Aided Engineering, 2019, 29(5): e21654. doi: 10.1002/mmce.21654
    [28] MUHAMMAD S A, SAULEAU R, and LEGAY H. Purely metallic waveguide-fed Fabry–Perot cavity antenna with a polarizing frequency selective surface for compact solutions in circular polarization[J]. IEEE Antennas and Wireless Propagation Letters, 2012, 11: 881–884. doi: 10.1109/LAWP.2012.2210693
    [29] LIU Zhenguo, CAO Zhenxin, and WU Lenan. Compact low-profile circularly polarized Fabry–Perot resonator antenna fed by linearly polarized microstrip patch[J]. IEEE Antennas and Wireless Propagation Letters, 2016, 15: 524–527. doi: 10.1109/LAWP.2015.2456886
    [30] REN Junyi, JIANG Wen, ZHANG Kunzhe, et al. A high-gain circularly polarized Fabry-Perot antenna with wideband low-RCS property[J]. IEEE Antennas and Wireless Propagation Letters, 2018, 17(5): 853–856. doi: 10.1109/LAWP.2018.2820015
    [31] GARCIA-VIGUERAS M, GOMEZ-TORNERO J L, GOUSSETIS G, et al. Efficient synthesis of 1-D Fabry-Perot antennas with low sidelobe levels[J]. IEEE Antennas and Wireless Propagation Letters, 2012, 11: 869–872. doi: 10.1109/LAWP.2012.2210182
    [32] HUA Yanru, PENG Lin, ZHENG Tiancheng, et al. An S-band Fabry-Perot cavity antenna with wide 1 dB gain bandwidth[J]. IEEE Antennas and Wireless Propagation Letters, 2021, 20(6): 963–967. doi: 10.1109/LAWP.2021.3068229
  • 加载中
图(12) / 表(3)
计量
  • 文章访问数:  671
  • HTML全文浏览量:  340
  • PDF下载量:  122
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-04-28
  • 修回日期:  2022-08-10
  • 网络出版日期:  2022-11-07
  • 刊出日期:  2022-12-16

目录

    /

    返回文章
    返回