高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于围猎改进哈里斯鹰优化的粒子滤波方法

李冀 周战洪 贺红林 刘文光 李怡庆

李冀, 周战洪, 贺红林, 刘文光, 李怡庆. 基于围猎改进哈里斯鹰优化的粒子滤波方法[J]. 电子与信息学报, 2023, 45(6): 2284-2292. doi: 10.11999/JEIT220532
引用本文: 李冀, 周战洪, 贺红林, 刘文光, 李怡庆. 基于围猎改进哈里斯鹰优化的粒子滤波方法[J]. 电子与信息学报, 2023, 45(6): 2284-2292. doi: 10.11999/JEIT220532
LI Ji, ZHOU Zhanhong, HE Honglin, LIU Wenguang, LI Yiqing. A Particle Filter Method Based on Harris Hawks Optimization Improved by Encircling Strategy[J]. Journal of Electronics & Information Technology, 2023, 45(6): 2284-2292. doi: 10.11999/JEIT220532
Citation: LI Ji, ZHOU Zhanhong, HE Honglin, LIU Wenguang, LI Yiqing. A Particle Filter Method Based on Harris Hawks Optimization Improved by Encircling Strategy[J]. Journal of Electronics & Information Technology, 2023, 45(6): 2284-2292. doi: 10.11999/JEIT220532

基于围猎改进哈里斯鹰优化的粒子滤波方法

doi: 10.11999/JEIT220532
基金项目: 国家自然科学基金(51665040),江西省自然科学基金重点项目(20202ACB202003),江西省自然科学基金(20212BAB211015)
详细信息
    作者简介:

    李冀:男,讲师,博士,主要研究方向为群智能优化算法、系统优化等

    周战洪:男,硕士生,研究方向为粒子滤波方法、多传感器数据融合

    贺红林:男,教授,博士,主要研究方向为精密驱动系统设计与优化

    刘文光:男,教授,博士,主要研究方向为机器人技术、目标跟踪

    李怡庆:男,讲师,博士,主要研究方向为粒子滤波方法、航空机电设备健康管理

    通讯作者:

    李冀 lj@nchu.edu.cn

  • 中图分类号: TN911.7; TN713

A Particle Filter Method Based on Harris Hawks Optimization Improved by Encircling Strategy

Funds: The National Natural Science Foundation of China (51665040), The Key Projects of Natural Science Foundation of Jiangxi Province (20202ACB202003), The Natural Science Foundation of Jiangxi Province (20212BAB211015)
  • 摘要: 针对标准粒子滤波过程的权值退化和样本贫化问题,该文结合融入围猎策略的哈里斯鹰优化算法设计一种群智能优化粒子滤波方法(EHHOPF)。首先,引入围猎策略替代哈里斯鹰优化算法全局搜索策略以适配粒子滤波环境;其次,采用Sigmoid函数构建非线性猎物逃逸能量平衡算法的探索阶段和开发阶段;最后构建选择比例因子融合开发阶段捕猎策略并采用非线性猎物跳跃强度保证算法收敛效率。仿真结果表明,与标准粒子滤波以及磷虾算法、蝙蝠算法、布谷鸟算法、灰狼算法优化的粒子滤波方法相比,基于围猎改进哈里斯鹰优化的粒子滤波方法有效提升了系统状态估计精度、滤波稳定性和滤波实时性。
  • 图  1  猎物逃逸能量变化对比

    图  2  滤波状态估计 (N=20)

    图  3  估计误差绝对值 (N=20)

    图  4  滤波状态估计 (N=100)

    图  5  估计误差绝对值 (N=100)

    图  6  不同时刻粒子分布

    图  7  不同方法的滤波实时性

    图  8  不同粒子数下各滤波方法均方根误差

    图  9  目标跟踪轨迹

    图  10  目标距离偏差变化

    表  1  群智能优化滤波方法参数设置

    滤波方法${w_1}$${w_2}$$ {N^{\max }} $$ {V_f} $$ {D^{\max }} $$\alpha $$\gamma $${f_{\min }}$${f_{\max }}$${p_a}$
    IKHPF0.20.60.081.20.01
    BAPF0.50.502
    ICSPF0.75
    下载: 导出CSV

    表  2  不同粒子滤波算法仿真结果比较

    滤波方法RMSEmeanRMSEvarTmean(s)
    205010020501002050100
    PF0.78630.61880.52310.03730.04190.02612.71E-036.23E-030.0113
    IKHPF0.06910.03710.03572.36E-031.17E-039.54E-040.02140.05820.1319
    BAPF0.04300.03130.02861.24E-043.19E-058.38E-060.01340.03290.0633
    ICSPF0.02250.01380.01121.82E-043.04E-059.86E-069.79E-030.01810.0310
    GWOPF0.05080.02950.02645.57E-031.22E-057.05E-063.06E-037.33E-030.0141
    EHHOPF0.01930.01169.02E-037.11E-056.91E-063.45E-066.04E-030.01480.0271
    下载: 导出CSV

    表  3  不同滤波算法目标跟踪结果(m)

    滤波方法RMSEmeanRMSEvarSGADMAD
    PxVxPyVyPxVxPyVy均值方差均值方差
    PF10.02600.664411.80820.856117.01580.062124.52500.124858.48301036.361.94941.1515
    IKHPF4.98630.61885.24030.596811.41430.152812.42530.080435.6843600.2551.18950.6669
    BAPF14.82411.213617.33071.456239.76580.165451.42220.370772.67561718.712.42251.9097
    ICSPF40.43980.110663.50230.2041277.3894.36E-041301.485.41E-04261.77713191.38.725914.657
    GWOPF4.55940.19125.08850.25134.41700.01196.05230.023828.4354196.5860.94780.2184
    EHHOPF4.47620.22494.99620.28713.09978.00E-034.24220.014827.9863144.9750.93290.1611
    下载: 导出CSV
  • [1] BAO Zhichao, JIANG Qiuxi, and LIU Fangzheng. Multiple model efficient particle filter based track-before-detect for maneuvering weak targets[J]. Journal of Systems Engineering and Electronics, 2020, 31(4): 647–656. doi: 10.23919/JSEE.2020.000040
    [2] 杨峰, 张婉莹. 一种多模型贝努利粒子滤波机动目标跟踪算法[J]. 电子与信息学报, 2017, 39(3): 634–639. doi: 10.11999/JEIT160467

    YANG Feng and ZHANG Wanying. Multiple model Bernoulli particle filter for maneuvering target tracking[J]. Journal of Electronics &Information Technology, 2017, 39(3): 634–639. doi: 10.11999/JEIT160467
    [3] ROWE D, RIUS I, GONZÀLEZ J, et al. Robust particle filtering for object tracking[C]. 13th International Conference on Image Analysis and Processing, Cagliari, Italy, 2005: 1158–1165.
    [4] YIN Shen and ZHU Xiangping. Intelligent particle filter and its application to fault detection of nonlinear system[J]. IEEE Transactions on Industrial Electronics, 2015, 62(6): 3852–3861. doi: 10.1109/TIE.2015.2399396
    [5] 焦自权, 范兴明, 张鑫, 等. 基于改进粒子滤波算法的锂离子电池状态跟踪与剩余使用寿命预测方法[J]. 电工技术学报, 2020, 35(18): 3979–3993. doi: 10.19595/j.cnki.1000-6753.tces.190750

    JIAO Ziquan, FAN Xingming, ZHANG Xin, et al. State tracking and remaining useful life predictive method of Li-ion battery based on improved particle filter algorithm[J]. Transactions of China Electrotechnical Society, 2020, 35(18): 3979–3993. doi: 10.19595/j.cnki.1000-6753.tces.190750
    [6] 黄卫华, 何佳乐, 陈阳, 等. 基于灰色模型和改进粒子滤波的无人机视觉/INS导航算法[J]. 中国惯性技术学报, 2021, 29(4): 459–466. doi: 10.13695/j.cnki.12-1222/o3.2021.04.006

    HUANG Weihua, HE Jiale, CHEN Yang, et al. UAV vision/INS navigation algorithm based on grey model and improved particle filter[J]. Journal of Chinese Inertial Technology, 2021, 29(4): 459–466. doi: 10.13695/j.cnki.12-1222/o3.2021.04.006
    [7] GORDON N J, SALMOND D J, and SMITH A F M. Novel approach to nonlinear/non-Gaussian Bayesian state estimation[J]. IEEE Proceedings F (Radar and Signal Processing), 1993, 140(2): 107–113. doi: 10.1049/ip-f-2.1993.0015
    [8] LI Tiancheng, SUN Shudong, SATTAR T P, et al. Fight sample degeneracy and impoverishment in particle filters: A review of intelligent approaches[J]. Expert Systems with Applications, 2014, 41(8): 3944–3954. doi: 10.1016/j.eswa.2013.12.031
    [9] AHWIADI M and WANG W. An adaptive particle filter technique for system state estimation and prognosis[J]. IEEE Transactions on Instrumentation and Measurement, 2020, 69(9): 6756–6765. doi: 10.1109/TIM.2020.2973850
    [10] 刘海涛, 林艳明, 陈永华, 等. 基于遗传算法的智能粒子滤波重采样策略研究[J]. 电子与信息学报, 2021, 43(12): 3459–3466. doi: 10.11999/JEIT200561

    LIU Haitao, LIN Yanming, CHEN Yonghua, et al. A study on resampling strategy of intelligent particle filter based on genetic algorithm[J]. Journal of Electronics &Information Technology, 2021, 43(12): 3459–3466. doi: 10.11999/JEIT200561
    [11] 刘润邦, 朱志宇. 万有引力优化的粒子滤波算法[J]. 西安电子科技大学学报:自然科学版, 2018, 45(2): 141–147. doi: 10.3969/j.issn.1001-2400.2018.02.024

    LIU Runbang and ZHU Zhiyu. Gravity optimized particle filter algorithm[J]. Journal of Xidian University, 2018, 45(2): 141–147. doi: 10.3969/j.issn.1001-2400.2018.02.024
    [12] 王尔申, 庞涛, 曲萍萍, 等. 基于混沌的改进粒子群优化粒子滤波算法[J]. 北京航空航天大学学报, 2016, 42(5): 885–890. doi: 10.13700/j.bh.1001-5965.2015.0670

    WANG Ershen, PANG Tao, QU Pingping, et al. Improved particle filter algorithm based on chaos particle swarm optimization[J]. Journal of Beijing University of Aeronautics and Astronautics, 2016, 42(5): 885–890. doi: 10.13700/j.bh.1001-5965.2015.0670
    [13] 田梦楚, 薄煜明, 陈志敏, 等. 萤火虫算法智能优化粒子滤波[J]. 自动化学报, 2016, 42(1): 89–97. doi: 10.16383/j.aas.2016.c150221

    TIAN Mengchu, BO Yuming, CHEN Zhimin, et al. Firefly algorithm intelligence optimized particle filter[J]. Acta Automatica Sinica, 2016, 42(1): 89–97. doi: 10.16383/j.aas.2016.c150221
    [14] HEIDARI A A, MIRJALILI S, FARIS H, et al. Harris hawks optimization: Algorithm and applications[J]. Future Generation Computer Systems, 2019, 97: 849–872. doi: 10.1016/j.future.2019.02.028
    [15] ZHANG Yang, ZHOU Xizhao, and SHIH P C. Modified Harris hawks optimization algorithm for global optimization problems[J]. Arabian Journal for Science and Engineering, 2020, 45(12): 10949–10974. doi: 10.1007/s13369-020-04896-7
    [16] ZHANG Xiaoqing, ZHANG Yuye, and MING Zhengfeng. Improved dynamic grey wolf optimizer[J]. Frontiers of Information Technology & Electronic Engineering, 2021, 22(6): 877–890. doi: 10.1631/FITEE.2000191
    [17] MAO W L, SUPRAPTO, and HUNG C W. Type-2 fuzzy neural network using grey wolf optimizer learning algorithm for nonlinear system identification[J]. Microsystem Technologies, 2018, 24(10): 4075–4088. doi: 10.1007/s00542-017-3636-x
    [18] 朱震曙, 蒋长辉, 薄煜明, 等. 磷虾群优化的改进粒子滤波算法[J]. 哈尔滨工业大学学报, 2020, 52(2): 186–192. doi: 10.11918/201903219

    ZHU Zhenshu, JIANG Changhui, BO Yuming, et al. Improved particle filter algorithm optimized by krill herd[J]. Journal of Harbin Institute of Technology, 2020, 52(2): 186–192. doi: 10.11918/201903219
    [19] 陈志敏, 田梦楚, 吴盘龙, 等. 基于蝙蝠算法的粒子滤波法研究[J]. 物理学报, 2017, 66(5): 050502. doi: 10.7498/aps.66.050502

    CHEN Zhimin, TIAN Mengchu, WU Panlong, et al. Intelligent particle filter based on bat algorithm[J]. Acta Physica Sinica, 2017, 66(5): 050502. doi: 10.7498/aps.66.050502
    [20] 黄辰, 费继友, 王丽颖, 等. 基于多策略差分布谷鸟算法的粒子滤波方法[J]. 农业机械学报, 2018, 49(4): 265–272. doi: 10.6041/j.issn.1000-1298.2018.04.030

    HUANG Chen, FEI Jiyou, WANG Liying, et al. Particle filter method based on multi-strategy difference cuckoo search algorithm[J]. Transactions of the Chinese Society for Agricultural Machinery, 2018, 49(4): 265–272. doi: 10.6041/j.issn.1000-1298.2018.04.030
  • 加载中
图(10) / 表(3)
计量
  • 文章访问数:  451
  • HTML全文浏览量:  201
  • PDF下载量:  101
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-04-27
  • 修回日期:  2022-07-25
  • 录用日期:  2022-08-02
  • 网络出版日期:  2022-08-04
  • 刊出日期:  2023-06-10

目录

    /

    返回文章
    返回